Latent Fault Detection in Large Scale Services

Latent Fault Detection in Large Scale Services

ID:39505777

大小:477.63 KB

頁數:12頁

時間:2019-07-04

Latent Fault Detection in Large Scale Services_第1頁
Latent Fault Detection in Large Scale Services_第2頁
Latent Fault Detection in Large Scale Services_第3頁
Latent Fault Detection in Large Scale Services_第4頁
Latent Fault Detection in Large Scale Services_第5頁
資源描述:

《Latent Fault Detection in Large Scale Services》由會員上傳分享,免費在線閱讀,更多相關內容在學術論文-天天文庫。

1、LatentFaultDetectioninLargeScaleServicesMosheGabel,AssafSchusterRan-GiladBachrach,NikolajBj?rnerDepartmentofComputerScienceMicrosoftResearchTechnion–IsraelInstituteofTechnologyMicrosoftHaifa,IsraelRedmond,WA,USAfmgabel,assafg@cs.technion.ac.ilfrang,nbjornerg@microsoft.comAbstract—Unexpect

2、edmachinefailures,withtheirresultingiscrossed,anactionistriggered.Theseactionsrangefromserviceoutagesanddataloss,posechallengestodatacenterman-notifyingthesystemoperatortoautomaticrecoveryattempts.agement.ExistingfailuredetectiontechniquesrelyondomainRule-basedfailuredetectionsuffersfroms

3、everalkeyprob-knowledge,precious(oftenunavailable)trainingdata,textuallems.Thresholdsmustbemadelowenoughthatfaultswillconsolelogs,orintrusiveservicemodi?cations.Wehypothesizethatmanymachinefailuresarenotaresultofnotgounnoticed.Atthesametimetheyshouldbesetabruptchangesbutratheraresultofalo

4、ngperiodofdegradedhighenoughtoavoidspuriousdetections.However,sincetheperformance.Thisiscon?rmedinourexperiments,inwhichoverworkloadchangesovertime,no?xedthresholdisadequate.20%ofmachinefailureswereprecededbysuchlatentfaults.Moreover,differentservices,orevendifferentversionsoftheWepropose

5、aproactiveapproachforfailureprevention.Wesameservice,mayhavedifferentoperatingpoints.Therefore,presentanovelframeworkforstatisticallatentfaultdetectionusingonlyordinarymachinecounterscollectedasstandardmaintainingtherulesrequiresconstant,manualadjustments,practice.Wedemonstratethreedetect

6、ionmethodswithinthisoftendoneonlyaftera“postmortem”examination.framework.Derivedtestsaredomain-independentandunsuper-Othershavenoticedtheshortcomingsoftheserule-basedvised,requireneitherbackgroundinformationnortuning,andapproaches.[8],[9]proposedtrainingadetectoronhistoricscaletoverylarge

7、services.Weprovestrongguaranteesontheannotateddata.However,suchapproachesfallshortduetofalsepositiveratesofourtests.IndexTerms—faultdetection;webservices;statisticalanalysis;thedif?cultyinobtainingthisdata,aswellasthesensitivitydistributedcomputing;statisticallearni

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯系客服。
3. 下載前請仔細閱讀文檔內容,確認文檔內容符合您的需求后進行下載,若出現內容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯系客服處理。