資源描述:
《example of a gauge field theory》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、Ref.TH.1571-CERNEXAMPLEOFAGAUGEFIELDTHEORYG.'tHooftandM.Veltman*)CERN—GenevaABSTRACTThetechniquesandresultsofapreviouspaperaredemons-tratedonasimplenon-Abelianmodel.TobepublishedintheProceedingsoftheMarseilleConference,June1972*)OnleavefromtheUniversityofUtrecht,Netherlands.Ref.TH.1571-CERN
2、17October19721.IntroductionThecombinatoricsofrenormalizablemassivevectorfieldtheoriesisquitecomplicated,mainlybecausesomanyverticeshavetobeincludedintheconsiderations.Awayaroundthisdifficultyistheuseofcompositelinesandverygeneralidentitiesbetweendiagrams,andinapreviouspublication1)wehaveuse
3、dsuchmethodstogiveageneralcombinatorialproofoftheequivalenceoftheS-matrixindifferentgauges.Alsorenormalizationproblemswerestudiedinthisway.Inthesecircumstancesanexplicitexamplemaybeverywelcome,andalsoinspiremoreconfidenceinthemethod.Inthisnotewewillconsidersuchanexampleinfulldetail.Thecasew
4、etakeiscase2ofref.2,resemblingmostcloselypuremassiveYang-Millsfields.Inthatexamplethereare,asphysicalparticles,threemassivevectormesonsofequalmassforminganisospintripletandonemassivescalarparticleofisospin0.ThereareseveralsetsofFeynmanrulesallgivingrisetothesameS-matrix.Oneofthegaugesisthep
5、hysicalgaugewheretheonlyinternallinesarethosethatcorrespondtophysicalparticles,anothergaugeshowsthatthetheoryisrenormalizable.Equivalenceofgaugesimpliesthatwehaveaunitaryrenormalizabletheory.Inthisnotewewillmoreorlessfollowthegeneraltreatmentofref.1.Theideaistogiveanexplicitexampleofthevari
6、ousequations.Therenormalizationprocedurewillbecarriedthroughuptooneclosedloop.Themodelcontainsthreeparameters:thevectormesonmass,themassofthe(physical)Higgs-Kibbleparticleandthecouplingconstant.Theseconstantsmustberenormalized,howeverinagaugeindependentway.3.MassivevectorfieldsConsideramass
7、lessYang-Millsisospin1tripletofvectormesonscoupledtoanisospinfieldK(2.1)(2.2)(2.3)ThisLagrangianisinvariant,tofirstorderinthefunctionsforthereplacement(2.4)(2.5)Since(2.5)isaninfinitesimalrotationinI-spinspacethelastandlastbutonetermof(2.1)areobviouslyin