GPUMLib An Efficient Open-Source GPU

GPUMLib An Efficient Open-Source GPU

ID:39748171

大小:725.16 KB

頁數(shù):8頁

時間:2019-07-10

GPUMLib An Efficient Open-Source GPU_第1頁
GPUMLib An Efficient Open-Source GPU_第2頁
GPUMLib An Efficient Open-Source GPU_第3頁
GPUMLib An Efficient Open-Source GPU_第4頁
GPUMLib An Efficient Open-Source GPU_第5頁
資源描述:

《GPUMLib An Efficient Open-Source GPU》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、InternationalJournalofComputerInformationSystemsandIndustrialManagementApplicationsISSN2150-7988Volume3(2011)pp.355-362?MIRLabs,www.mirlabs.net/ijcisim/index.htmlGPUMLib:AnEf?cientOpen-SourceGPUMachineLearningLibraryNoelLopes1andBernardeteRibeiro21UDI,PolytechnicInstituteofGuarda,P

2、ortugalCISUC,UniversityofCoimbra,Portugalnoel@ipg.pt2DepartmentofInformaticsEngineeringCISUC,UniversityofCoimbra,Portugalbribeiro@dei.uc.ptAbstract:GraphicsProcessingUnits(GPUs)placedatourdis-ciatedwithMLproblemsincreases,thetrendistohavemoreposalanunprecedentedcomputational-power,

3、largelysurpass-challengingandcomputationallydemandingproblemsthatingtheperformanceofcutting-edgeCPUs(CentralProcess-canbecomeintractablefortraditionalCPU(CentralProcess-ingUnits).Thehigh-parallelisminherenttotheGPUmakesingUnit)architectures.Therefore,thepressuretoshiftdevel-thisdev

4、iceespeciallywell-suitedtoaddressMachineLearn-opmenttowardsparallelarchitectureswithhigh-throughputing(ML)problemswithprohibitivelycomputationalintensivehasbeenaccentuated.Inthiscontext,theGraphicsProcess-tasks.Nevertheless,fewMLalgorithmshavebeenimplementedingUnit(GPU)representsac

5、ompellingsolutiontoaddressontheGPUandmostarenotopenlyshared,posingdif?cul-theincreasingneedsofcomputationalperformance,inpar-tiesforresearchersandengineersaimingtodevelopGPU-basedticularintheML?eld.systems.Tomitigatethisproblem,weproposethecreationofanInthelasteightyearstheperforma

6、nceandcapabilitiesofopensourceGPUMachineLearningLibrary(GPUMLib)thattheGPUshavebeensigni?cantlyaugmentedandtodaysaimstoprovidethebuildingblocksforthedevelopmentofef-GPUs,includedinmainstreamcomputingsystems,arepow-?cientGPUMLsoftware.Experimentalresultsonbenchmarkerful,highlyparall

7、elandprogrammabledevicesthatcanbedatasetsshowthatthealgorithmsalreadyimplementedyieldusedforgeneral-purposecomputingapplications[2].Sincesigni?canttimesavingsovertheCPUcounterparts.GPUsaredesignedforhigh-performancerenderingwhereKeywords:GPUComputing,machinelearningalgorithms.repea

8、tedoperationsarecommon,the

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。