Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC)

ID:39786355

大?。?5.24 KB

頁數(shù):16頁

時間:2019-07-11

Markov Chain Monte Carlo (MCMC)_第1頁
Markov Chain Monte Carlo (MCMC)_第2頁
Markov Chain Monte Carlo (MCMC)_第3頁
Markov Chain Monte Carlo (MCMC)_第4頁
Markov Chain Monte Carlo (MCMC)_第5頁
資源描述:

《Markov Chain Monte Carlo (MCMC)》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫

1、1MarkovChainMonteCarlo(MCMC)ByStevenF.ArnoldProfessorofStatistics-PennStateUniversitySomereferencesforMCMCare1.Tanner,M.(1993)ToolsforStatisticalInference,MethodforExplorationofPosteriorDistributionsandLikelihoodFunc-tions.2.Gilks,W.,Richardson,S.andSpiegelhalter,D.(1996)M

2、arkovChainMonteCarloinPractice.3.Gelman,A.,Carlin,J.,Stern,HandRubin,D.(1995)BayesianDataAnalysis.AreferenceforMarkovChainsis1.Ross,Sheldon,(1989)IntroductiontoProbabilitymodels4thEdit.11.1MCMCandBayesianStatisticsInthelast15yearstherehasbeenanexplosionofworkinBayesianstat

3、istics.AsyourecallaBayesianstatisticianchoosesapriordistributionovertheparameterspace.Hethendeterminestheposteriordistribution.AsDr.Leonardobserved,onceweknowtheposteriordistribution,Bayesiananalysisisoftenfairlyeasy.Oftenchoosingthepriorandcomputingtheposteriorarethehardp

4、arts.Inthepast,oneoftheproblemswithBayesianstatisticshasbeenˉndingtheposteriordistribution.InrecentyearsthisproblemhasbeencontrolledbyusingMCMCtosimulatetheposterior.21.2MarkovchainsAdiscretetimeMarkovChainisasequenceofrandomvariablesinwhichtheconditionaldistributionofapre

5、sentobservationsgivenasetofpastobservationsonlydependsonthepastthroughthemostrecentobservation.Insymbols3′k1

6、Markovchainsaretime-homogenious.3Example(symmetricrandomwalk(drunkardswalk))ThisisaMarkovchainonthesetofallintegersinwhich(Xt?1+1withp=:5XtjXt?1=Xt?1?1withp=:5ThepossiblevaluesfortheMarkovchainarecalledthestatesoftheMarkovchain.Astationarydistribution?foraMarkovchainisadis

7、tributionoverthestatessuchthatifwestarttheMarkovchainin?,westayin?.Alimitingdistribution?;isadistributionoverthestatessuchthatwhateverthestartingthedistribution?0,theMarkovchainconvergesto?:Itiseasilyseenthatifthereisalimitingdistribution?;thenitisunique,anditistheonlystat

8、ionarydistribution.Itiseasiertoˉndastationarydistributionthanalimitingdistribution.Sotoˉn

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。