Uncertain Data Mining- An Example in Clustering Location Data

Uncertain Data Mining- An Example in Clustering Location Data

ID:39820536

大?。?38.18 KB

頁(yè)數(shù):5頁(yè)

時(shí)間:2019-07-12

Uncertain Data Mining- An Example in Clustering Location Data_第1頁(yè)
Uncertain Data Mining- An Example in Clustering Location Data_第2頁(yè)
Uncertain Data Mining- An Example in Clustering Location Data_第3頁(yè)
Uncertain Data Mining- An Example in Clustering Location Data_第4頁(yè)
Uncertain Data Mining- An Example in Clustering Location Data_第5頁(yè)
資源描述:

《Uncertain Data Mining- An Example in Clustering Location Data》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、UncertainDataMining:AnExampleinClusteringLocationDataMichaelChau1,ReynoldCheng2,BenKao3,andJackeyNg11SchoolofBusiness,TheUniversityofHongKong,Pokfulam,HongKongmchau@business.hku.hk,jackeyng@hkusua.hku.hk2DepartmentofComputing,HongKongPolytechnicUniversity

2、,Kowloon,HongKongcsckcheng@comp.polyu.edu.hk3DepartmentofComputerScience,TheUniversityofHongKong,Pokfulam,HongKongkao@cs.hku.hkAbstract.Datauncertaintyisaninherentpropertyinvariousapplicationsduetoreasonssuchasoutdatedsourcesorimprecisemeasurement.Whendat

3、amin-ingtechniquesareappliedtothesedata,theiruncertaintyhastobeconsideredtoobtainhighqualityresults.WepresentUK-meansclustering,analgorithmthatenhancestheK-meansalgorithmtohandledatauncertainty.WeapplyUK-meanstotheparticularpatternofmoving-objectuncertain

4、ty.Experimentalre-sultsshowthatbyconsideringuncertainty,aclusteringalgorithmcanproducemoreaccurateresults.1IntroductionInapplicationsthatrequireinteractionwiththephysicalworld,suchaslocation-basedservices[6]andsensormonitoring[3],datauncertaintyisaninhere

5、ntpropertyduetomeasurementinaccuracy,samplingdiscrepancy,outdateddatasources,orotherer-rors.Althoughmuchresearchefforthasbeendirectedtowardsthemanagementofuncertaindataindatabases,fewresearchershaveaddressedtheissueofminingun-certaindata.Wenotethatwithunc

6、ertainty,datavaluesarenolongeratomic.Toap-plytraditionaldataminingtechniques,uncertaindatahastobesummarizedintoatomicvalues.Unfortunately,discrepancyinthesummarizedrecordedvaluesandtheactualvaluescouldseriouslyaffectthequalityoftheminingresults.Figure1ill

7、us-tratesthisproblemwhenaclusteringalgorithmisappliedtomovingobjectswithlocationuncertainty.Ifwesolelyrelyontherecordedvalues,manyobjectscouldpossiblybeputintowrongclusters.Evenworse,eachmemberofaclusterwouldchangetheclustercentroids,thusresultinginmoreer

8、rors.Fig.1.(a)Thereal-worlddataarepartitionedintothreeclusters(a,b,c).(b)Therecordedlocationsofsomeobjects(shaded)arenotthesameastheirtruelocation,thuscreatingclustersa’,b’,c’andc’’.(c)Whenlineuncertaintyisconsidere

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。