Virtual Vector Machine for Bayesian Online Classification

Virtual Vector Machine for Bayesian Online Classification

ID:40366371

大?。?22.72 KB

頁數(shù):8頁

時間:2019-08-01

Virtual Vector Machine for Bayesian Online Classification_第1頁
Virtual Vector Machine for Bayesian Online Classification_第2頁
Virtual Vector Machine for Bayesian Online Classification_第3頁
Virtual Vector Machine for Bayesian Online Classification_第4頁
Virtual Vector Machine for Bayesian Online Classification_第5頁
資源描述:

《Virtual Vector Machine for Bayesian Online Classification》由會員上傳分享,免費在線閱讀,更多相關內容在學術論文-天天文庫

1、VirtualVectorMachineforBayesianOnlineClassi cationThomasP.MinkaRongjingXiangYuan(Alan)QiMicrosoftResearchDepartmentofCSDepartmentsofCS&Statistics7JJThomsonAvenuePurdueUniversityPurdueUniversityCambridge,CB30FB,UKWestLafayette,IN47907WestLafayette,IN47907Abstractc

2、eptronalgorithmforbinary(two-class)classi cation.Foronlineregressionproblems,aclassicalalgorithmistheKalman lter.Forlinear-Gaussianregression,theInatypicalonlinelearningscenario,aKalman lterisanexactalgorithm,inthesensethatlearnerisrequiredtoprocessalargedataitre

3、tainsalloftheinformationinthedatanecessarystreamusingasmallmemorybu er.Suchtomakeoptimalpredictions.arequirementisusuallyincon ictwithalearner'sprimarypursuitofpredictionac-Ingeneral,youcanconstructonlinelearningalgo-curacy.Toaddressthisdilemma,weintro-rithmsbyfo

4、llowingaBayesianparadigm(Opper&duceanovelBayesianonlineclassi cational-Winther,1999).Givenastatisticalmodelofthedata,gorithm,calledtheVirtualVectorMachine.youmaintainaposteriordistributiononthemodelThevirtualvectormachineallowsyoutoparameters.Aseachdatapointarriv

5、es,theposteriorsmoothlytrade-o predictionaccuracywithdistributionisupdated.Tomakepredictions,youav-memorysize.Thevirtualvectormachineerageaccordingtoyouruncertaintyintheparameters.summarizestheinformationcontainedintheTheKalman ltercanbeseenasaspecialcaseofthispr

6、ecedingdatastreambyaGaussiandistri-method.Tokeepthemethodwithinamemorybound,butionovertheclassi cationweightsplusayouwilltypicallyneedtoapproximatetheposteriorconstantnumberofvirtualdatapoints.Thedistribution.Anecientande ectiveapproachtovirtualdatapointsaredesi

7、gnedtoaddextrathisiscalledassumed-density ltering(ADF)(Oppernon-Gaussianinformationabouttheclassi-&Winther,1999;Minka,2001).ADFmaintainsan cationweights.Tomaintaintheconstantapproximateposteriordistributionwithinagivenfam-numberofvirtualpoints,thevirtualvectorily

8、F.Uponreceivinganewpoint,theposteriorisup-machineaddsthecurrentrealdatapointintodatedexactlyandthenprojectedbackontoFby nd-thevirtualpointset,mergestwomostsimi

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內容,確認文檔內容符合您的需求后進行下載,若出現(xiàn)內容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。