Integration of genetic algorithms and GIS for optimal location search

Integration of genetic algorithms and GIS for optimal location search

ID:40383370

大?。?47.50 KB

頁數(shù):21頁

時間:2019-08-01

Integration of genetic algorithms and GIS for optimal location search_第1頁
Integration of genetic algorithms and GIS for optimal location search_第2頁
Integration of genetic algorithms and GIS for optimal location search_第3頁
Integration of genetic algorithms and GIS for optimal location search_第4頁
Integration of genetic algorithms and GIS for optimal location search_第5頁
資源描述:

《Integration of genetic algorithms and GIS for optimal location search》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、InternationalJournalofGeographicalInformationScienceVol.19,No.5,May2005,581–601ResearchArticleIntegrationofgeneticalgorithmsandGISforoptimallocationsearchXIALI{andANTHONYGAR-ONYEH{{SchoolofGeographyandPlanning,SunYat-senUniversity,135WestXingangRd.,Guangzhou510275,P.R.China

2、;e-mail:lixia@graduate.hku.hk;gplx@zsu.edu.cn{CentreofUrbanPlanningandEnvironmentalManagement,TheUniversityofHongKong,PokfulamRoad,HongKongSAR,P.R.China;e-mail:hdxugoy@hkucc.hku.hk(Received24February2004;accepted23September2004)Optimallocationsearchisfrequentlyrequiredinman

3、yurbanapplicationsforsitingoneormorefacilities.However,thesearchmaybecomeverycomplexwhenitinvolvesmultiplesites,variousconstraintsandmultiple-objectives.Theexhaustiveblind(brute-force)searchwithhigh-dimensionalspatialdataisinfeasibleinsolvingoptimizationproblemsbecauseofahu

4、gecombinatorialsolutionspace.Intelligentsearchalgorithmscanhelptoimprovetheperformanceofspatialsearch.ThisstudywilldemonstratethatgeneticalgorithmscanbeusedwithGeographicalInformationsystems(GIS)toeffectivelysolvethespatialdecisionproblemsforoptimallysittingnsitesofafacilit

5、y.DetailedpopulationandtransportationdatafromGISareusedtofacilitatethecalculationoffitnessfunctions.MultipleplanningobjectivesarealsoincorporatedintheGAprogram.ExperimentsindicatethattheproposedmethodhasmuchbetterperformancethansimulatedannealingandGISneighborhoodsearchmeth

6、ods.TheGAmethodisveryconvenientinfindingthesolutionwiththehighestutilityvalue.Keywords:Geneticalgorithms;GIS;Optimallocation;Multipleobjectives;Simulatedannealing1.IntroductionAnoftenencounteredspatialdecisionproblemistosearchforthebestsiteorsitestoaccommodateoneormorefacil

7、itiestogeneratethebestutilityvalues(e.g.themaximumpopulationcoverageandminimumtransportcost).Traditionallocation-allocationmethodsbeforeGISdatawereavailableonlyuserelativelysmalldatasets(Church1999).Thegeneralfacilitylocationproblemanditsvariants,includingmostlocation-alloc

8、ationandp-medianproblems,areknowntobeNP-hardcombinatorialoptimizationproblems.Most

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。