large dimensional random matrix theory for signal detection and estimation in array processing

large dimensional random matrix theory for signal detection and estimation in array processing

ID:40390086

大?。?22.19 KB

頁(yè)數(shù):5頁(yè)

時(shí)間:2019-08-01

large dimensional random matrix theory for signal detection and estimation in array processing_第1頁(yè)
large dimensional random matrix theory for signal detection and estimation in array processing_第2頁(yè)
large dimensional random matrix theory for signal detection and estimation in array processing_第3頁(yè)
large dimensional random matrix theory for signal detection and estimation in array processing_第4頁(yè)
large dimensional random matrix theory for signal detection and estimation in array processing_第5頁(yè)
資源描述:

《large dimensional random matrix theory for signal detection and estimation in array processing》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、LARGEDIMENSIONALRANDOMMATRIXTHEORYFORSIGNALDETECTIONANDESTIMATIONINARRAYPROCESSINGJ.W.SilversteinyandP.L.CombetteszyDepartmentofMathematics,NorthCarolinaStateUniversity,Raleigh,NC27695,USA.zDepartmentofElectricalEngineering,CityCollegeandGraduateSchool,CityUniversityofNewYork,Ne

2、wYork,NY10031,USA.ABSTRACTsensorsaremodeledasobservationsoftherandomvec-torX(t)=AS(t)+N(t),t2[0;+1[,whereAisaInthispaper,webringintoplayelementsofthespec-pqcomplexmatrixdependingonthegeometryoftraltheoryoflargedimensionalrandommatricesandthearrayandtheparametersofthesignals,andi

3、sdemonstratetheirrelevancetosourcedetectionandassumedtohaverankq.bearingestimationinproblemswithsizablearrays.Thedetectionproblemistoestimateqfromtheob-Theseresultsareappliedtothesamplespatialcovari-servationofnsnapshots(X(ti))1inofthedatapro-ancematrix,Rb,ofthesenseddata.Itiss

4、eenthatde-cess.Undertheaboveassumptions,therandomvec-tectioncanbeachievedwithasamplesizeconsiderablytors(X(t))t2[0;+1[arei.d.withspatialcovariancema-lessthanthatrequiredbyconventionalapproaches.AstrixR=EX(0)X(0)=ARA+2I,whereIde-Sppregardstodeterminingthedirectionsofarrivals,it

5、isnotestheppidentitymatrix.Moreover,thep?qarguedthatmoreaccurateestimatescanbeobtainedsmallesteigenvaluesofRareequalto2.Theseeigen-byconstrainingRbtobeconsistentwithvariousapri-valuesarereferredtoasthenoiseeigenvaluesandtheoriconstraints,includingthosearisingfromlargedi-remaind

6、erofthespectrumisreferredtoasthesignalmensionalrandommatrixtheory.Asettheoreticfor-eigenvalues.SinceRisnotknownitsspectrummustmalismisusedtoformulatethisfeasibilityproblem.beinferredfromobservingthatofthesamplecovari-PnUnsolvedissuesarediscussed.ancematrixRb=(1=n)i=1X(ti)X(ti).L

7、ooselyspeaking,onemustthendecidewheretheobservedPROBLEMSTATEMENTspectrumsplitsintonoiseandsignaleigenvalues.TheestimationproblemistodeterminethedirectionWeconsidertheproblemofdetectingthenumberqofarrivals(i)1ipofthesources.Understandardofsourcesimpingingonanarrayofp(q

8、potheses,thisproblemcanbesolvedviatheMUS

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶(hù)上傳,版權(quán)歸屬用戶(hù),天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶(hù)請(qǐng)聯(lián)系客服處理。