ON PATH INTEGRATION ON

ON PATH INTEGRATION ON

ID:40391255

大小:271.10 KB

頁數(shù):8頁

時(shí)間:2019-08-01

ON PATH INTEGRATION ON_第1頁
ON PATH INTEGRATION ON_第2頁
ON PATH INTEGRATION ON_第3頁
ON PATH INTEGRATION ON_第4頁
ON PATH INTEGRATION ON_第5頁
資源描述:

《ON PATH INTEGRATION ON》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、QUANTUMGROUPSANDQUANTUMSPACESBANACHCENTERPUBLICATIONS,VOLUME40INSTITUTEOFMATHEMATICSPOLISHACADEMYOFSCIENCESWARSZAWA1997ONPATHINTEGRATIONONNONCOMMUTATIVEGEOMETRIESACHIMKEMPFDepartmentofAppliedMathematics&TheoreticalPhysicsandCorpusChristiCollegeintheUniversit

2、yofCambridgeSilverStreet,CambridgeCB39EW,U.K.E-mail:a.kempf@amtp.cam.ac.ukAbstract.Wediscussarecentapproachtoquantum?eldtheoreticalpathintegrationonnoncommutativegeometrieswhichimplyUV/IRregularising?niteminimaluncertaintiesinpositionsand/ormomenta.Oneclasso

3、fsuchnoncommutativegeometriesariseas‘momentumspaces’overcurvedspaces,forwhichwecannowgivethefullsetofcommutationrelationsincoordinatefreeform,basedontheSyngeworldfunction.1.Introduction.Acrucialexampleofnoncommutativegeometry[1]isthequan-tummechanicalphasesp

4、acewithitsnoncommuting`coordinatefunctions'xiandpj.Weinvestigatethepossibilitythatalsothepositionandmomentumspacesacquirenoncom-mutativegeometricfeatures,i.e.weconsiderassociativeHeisenbergalgebrasAgeneratedbyelementsxi;pj,nowallowing[xi;xj]6=0;[pi;pj]6=0(1)

5、andalso:[xi;pj]=ih(ij+ijklxkxl+ijklpkpl+:::)(2)Werestrictourselvestorelationsthatallowtheinvolutionx=x;p=p,i.e.forwhichiiii`'extendstoanantialgebrahomomorphism.TomotivatetheparticularformofrelationEq.2,letthisrelationberepresentedonadensedomainDHinaHil

6、bertspaceH,i.e.boththexiandthepjaretoberepresentedassymmetricoperatorsonD.Assuming,2e.g.inthesimplestcaseofonedimension, ; >0and <1=h,togetherwiththeusualde nitionofuncertainties(x)2:=hj(x