資源描述:
《對(duì)偶問(wèn)題和對(duì)偶單純形法》由會(huì)員上傳分享,免費(fèi)在線(xiàn)閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。
1、第七章對(duì)偶問(wèn)題和對(duì)偶單純形法一、問(wèn)題的提出二、對(duì)偶問(wèn)題和原問(wèn)題的轉(zhuǎn)換三、對(duì)偶規(guī)劃的性質(zhì)四、對(duì)偶單純形法五、交替單純形法一、問(wèn)題的提出原問(wèn)題:a和b產(chǎn)量各為多少可以使利潤(rùn)最大?25010C40012B30011A資源限量ba產(chǎn)品設(shè)備10050利潤(rùn)一、問(wèn)題的提出原LP模型:Maxz=50x1+100x2s.t:1·x1+1·x2≤3002·x1+1·x2≤4000·x1+1·x2≤250x1≥0,x2≥0一、問(wèn)題的提出若考慮將三種設(shè)備出租,如何合理確定各設(shè)備的租金y1、y2、y3(元/臺(tái)時(shí))?目標(biāo)函數(shù):minz=30
2、0y1+400y2+250y3約束條件:y1+2y2≥50y1+y2+y3≥100y1、y2、y3≥0一、問(wèn)題的提出這樣兩個(gè)線(xiàn)性規(guī)劃問(wèn)題就是一對(duì)對(duì)偶問(wèn)題。稱(chēng)其中一個(gè)為原問(wèn)題(LP問(wèn)題),另一個(gè)為對(duì)偶問(wèn)題(DLP問(wèn)題)。由于它們內(nèi)在的聯(lián)系,可以根據(jù)其中一個(gè)模型,寫(xiě)出其對(duì)偶問(wèn)題的模型。二、對(duì)偶問(wèn)題和原問(wèn)題的轉(zhuǎn)換LP問(wèn)題和DLP問(wèn)題的關(guān)系:規(guī)范形(LP)Maxz=cTxs.t.Ax≤bx≥0(DLP)Minf=bTys.t.ATy≥cy≥0二、對(duì)偶問(wèn)題和原問(wèn)題的轉(zhuǎn)換1、對(duì)于規(guī)范型,直接按對(duì)應(yīng)關(guān)系轉(zhuǎn)換例:Maxz=20x1+8
3、x2+6x3s.t:8x1+3x2+2x3≤2502x1+x2≤504x1+3x3≤150x1,x2,x3≥0寫(xiě)出該線(xiàn)性規(guī)劃問(wèn)題的對(duì)偶問(wèn)題。二、對(duì)偶問(wèn)題和原問(wèn)題的轉(zhuǎn)換則對(duì)偶問(wèn)題為:Minf=250y1+50y2+150y3s.t:8y1+2y2+4y3≥203y1+y2≥82y1+3y3≥6y1,y2,y3≥0二、對(duì)偶問(wèn)題和原問(wèn)題的轉(zhuǎn)換2、對(duì)于非規(guī)范形式,先化為規(guī)范形式例:寫(xiě)出線(xiàn)性規(guī)劃模型的對(duì)偶問(wèn)題Minz=3x1+4x2+6x3s.t:x1+3x2-2x3+x4=252x1+7x3+2x4≥602x1+2x2-
4、4x3≤30x1,x2,x4≥0,x3無(wú)非負(fù)約束二、對(duì)偶問(wèn)題和原問(wèn)題的轉(zhuǎn)換首先轉(zhuǎn)換為規(guī)范形Minz=3x1+4x2+6x3變?yōu)镸ax(-z)=-3x1-4x2-6x3約束條件x1+3x2-2x3+x4=25等同于x1+3x2-2x3+x4≤25和x1+3x2-2x3+x4≥25聯(lián)立二、對(duì)偶問(wèn)題和原問(wèn)題的轉(zhuǎn)換2x1+7x3+2x4≥60可轉(zhuǎn)化為-2x1-7x3-2x4≤-60x3無(wú)非負(fù)約束,則令x3=x3’-x3’’x3’-x3’’≥0則原LP模型可以化為規(guī)范形:二、對(duì)偶問(wèn)題和原問(wèn)題的轉(zhuǎn)換Max(-z)=-3x1-4x2
5、-6x3’+6x3’’s.t:x1+3x2-2x3’+2x3’’+x4≤25-x1-3x2+2x3’-2x3’’-x4≤-25-2x1-7x3’+7x3’’-2x4≤-602x1+2x2-4x3’+4x3’’≤30x1,x2,x3’,x3’’,x4≥0二、對(duì)偶問(wèn)題和原問(wèn)題的轉(zhuǎn)換故DLP可寫(xiě)出:Minf=25y1-25y2-60y3+30y4s.t:y1-y2-2y3+2y4≥-33y1-3y2+2y4≥-4-2y1+2y2-7y3-4y4≥-62y1-2y2+7y3+4y4≥6y1-y2-2y3≥0y1,y2,y3,y
6、4,y5≥0二、對(duì)偶問(wèn)題和原問(wèn)題的轉(zhuǎn)換將DLP模型整理可得:Minf=25y5+60y3+30y4s.t:y5+2y3+2y4≥-33y5+2y4≥-4-2y5+7y3-4y4=-6y5+2y3≥0y5無(wú)非負(fù)約束,y3≤0,y4≥0LP與DLP的一般對(duì)應(yīng)關(guān)系原問(wèn)題LP對(duì)偶問(wèn)題DLP目標(biāo)函數(shù)maxzminf目標(biāo)函數(shù)變量xj(j=1,2……n)n個(gè)n個(gè)約束條件j(j=1,2……n)≥0≥≤0≤無(wú)約束=約束條件i(i=1,2……m)m個(gè)m個(gè)變量yj(i=1,2……m)≤≥0≥≤0=無(wú)約束目標(biāo)函數(shù)變量的系數(shù)cj(j=1,2……
7、n)約束條件右端項(xiàng)cjT(j=1,2……n)約束條件右端項(xiàng)bi(i=1,2……m)目標(biāo)函數(shù)變量的系數(shù)biT(i=1,2……m)練習(xí)寫(xiě)出下面LP問(wèn)題的DLP模型Minz=x1+2x2+5x3s.t:2x1+3x2+x3=103x1+x2+x3≥50x1+x3≤20x1≥0,x2≤0,x3無(wú)非負(fù)約束三、對(duì)偶規(guī)劃的性質(zhì)1、對(duì)稱(chēng)性:對(duì)偶問(wèn)題的對(duì)偶是原問(wèn)題。2、弱對(duì)偶性:若X是原問(wèn)題(max)的可行解,Y是對(duì)偶問(wèn)題(min)的可行解,則存在CX≤bTY三、對(duì)偶規(guī)劃的性質(zhì)推論a:原問(wèn)題任一可行解的目標(biāo)函數(shù)值是其對(duì)偶問(wèn)題目標(biāo)函數(shù)值的
8、下界;反之對(duì)偶問(wèn)題任一可行解的目標(biāo)函數(shù)值是其原問(wèn)題目標(biāo)函數(shù)值的上界。推論b:若原問(wèn)題解無(wú)界,則其對(duì)偶問(wèn)題無(wú)可行解;若對(duì)偶問(wèn)題解無(wú)界,則原問(wèn)題無(wú)可行解。(逆命題不成立)推論c:若原問(wèn)題有可行解而對(duì)偶問(wèn)題無(wú)可行解,則原問(wèn)題無(wú)界;反之,對(duì)偶問(wèn)題有可行解而原問(wèn)題無(wú)可行解,則對(duì)偶問(wèn)題解無(wú)界。三、對(duì)偶規(guī)劃的性質(zhì)3、最優(yōu)性:若x,y分別是原問(wèn)題