An_introduction_to_graphical_models

An_introduction_to_graphical_models

ID:40879017

大?。?85.53 KB

頁數(shù):19頁

時間:2019-08-09

An_introduction_to_graphical_models_第1頁
An_introduction_to_graphical_models_第2頁
An_introduction_to_graphical_models_第3頁
An_introduction_to_graphical_models_第4頁
An_introduction_to_graphical_models_第5頁
資源描述:

《An_introduction_to_graphical_models》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、AnintroductiontographicalmodelsKevinP.Murphy10May20011IntroductionThefollowingquotation,fromthePrefaceof[Jor99],providesaveryconciseintroductiontographicalmodels.Graphicalmodelsareamarriagebetweenprobabilitytheoryandgraphtheory.Theyprovideanaturaltoolfordealingwithtwoproblemstha

2、toccurthroughoutappliedmathematicsandengineering{uncertaintyandcomplexity{andinparticulartheyareplayinganincreasinglyimportantroleinthedesignandanalysisofmachinelearningalgorithms.Fundamentaltotheideaofagraphicalmodelisthenotionofmodularity{acomplexsystemisbuiltbycombiningsimple

3、rparts.Probabilitytheoryprovidesthegluewherebythepartsarecombined,ensuringthatthesystemasawholeisconsistent,andprovidingwaystointerfacemodelstodata.Thegraphtheoreticsideofgraphicalmodelsprovidesbothanintuitivelyappealinginterfacebywhichhumanscanmodelhighly-interactingsetsofvaria

4、blesaswellasadatastructurethatlendsitselfnaturallytothedesignofecientgeneral-purposealgorithms.Manyoftheclassicalmultivariateprobabalisticsystemsstudiedin eldssuchasstatistics,systemsengineering,informationtheory,patternrecognitionandstatisticalmechanicsarespecialcasesofthegene

5、ralgraphicalmodelformalism{examplesincludemixturemodels,factoranalysis,hiddenMarkovmodels,Kalman ltersandIsingmodels.Thegraphicalmodelframeworkprovidesawaytoviewallofthesesystemsasinstancesofacommonunderlyingformalism.Thisviewhasmanyadvantages{inparticular,specializedtechniquest

6、hathavebeendevelopedinone eldcanbetransferredbetweenresearchcommunitiesandexploitedmorewidely.Moreover,thegraphicalmodelformalismprovidesanaturalframeworkforthedesignofnewsystems.Inthispaper,wewill eshoutthisremarkbydiscussingthefollowingtopics:Representation:howcanagraphicalmo

7、delcompactlyrepresentajointprobabilitydistribution?Inference:howcanweecientlyinferthehiddenstatesofasystem,givenpartialandpossiblynoisyobservations?Learning:howdoweestimatetheparametersandstructureofthemodel?Decisiontheory:whathappenswhenitistimetoconvertbeliefsintoactions?

8、Applications:whathasthismachinerybeenusedfor?1P

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。
相關(guān)文章
更多
相關(guān)標(biāo)簽