Neural network - trajectory generation

Neural network - trajectory generation

ID:40947163

大小:499.82 KB

頁數(shù):17頁

時間:2019-08-11

Neural network - trajectory generation_第1頁
Neural network - trajectory generation_第2頁
Neural network - trajectory generation_第3頁
Neural network - trajectory generation_第4頁
Neural network - trajectory generation_第5頁
資源描述:

《Neural network - trajectory generation》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、302IEEETRANSACTIONSONSYSTEMS,MAN,ANDCYBERNETICS—PARTB:CYBERNETICS,VOL.31,NO.3,JUNE2001NeuralNetworkApproachestoDynamicCollision-FreeTrajectoryGenerationSimonX.Yang,Member,IEEE,andMaxMeng,Member,IEEEAbstract—Inthispaper,dynamiccollision-freetrajectorysiblepathsinthew

2、orkspace,whichnormallydealwithstaticgenerationinanonstationaryenvironmentisstudiedusingenvironmentonlyandarecomputationallyexpensivewhenthebiologicallyinspiredneuralnetworkapproaches.Theproposedenvironmentiscomplex.Somesearchingbasedmodels(e.g.,neuralnetworkistopolo

3、gicallyorganized,wherethedynamics[12],[23],[50])sufferfromundesiredlocalminima,i.e.,theofeachneuronischaracterizedbyashuntingequationoranadditiveequation.ThestatespaceoftheneuralnetworkcanberobotsmaybetrappedinsomecasessuchaswithconcaveeithertheCartesianworkspaceort

4、hejointspaceofmulti-jointU-shapedobstacles.SeshadriandGhosh[47]proposedanewrobotmanipulators.Thereareonlylocallateralconnectionspathplanningmodelusinganiterativeapproach.Howeveramongneurons.Thereal-timeoptimaltrajectoryisgeneratedthismodeliscomputationallycomplicate

5、d,particularlyinthroughthedynamicactivitylandscapeoftheneuralnetworkacomplexenvironment.LiandBui[28]proposedafluidwithoutexplicitlysearchingoverthefreespacenorthecollisionpaths,withoutexplicitlyoptimizinganyglobalcostfunctions,modelforrobotpathplanninginastaticenvir

6、onment.Ongwithoutanypriorknowledgeofthedynamicenvironment,andandGilbert[38]proposedanewmodelforpathplanningwithwithoutanylearningprocedures.Thereforethemodelalgorithmpenetrationgrowthdistance,whichsearchesovercollisioniscomputationallyefficient.Thestabilityoftheneur

7、alnetworkpathsinsteadofsearchingoverfreespaceasmostothermodelssystemisguaranteedbytheexistenceofaLyapunovfunctiondo.Thismodelcangenerateoptimal,continuousrobotpathscandidate.Inaddition,thismodelisnotverysensitivetothemodelparameters.Severalmodelvariationsarepresente

8、dandinastaticenvironmentonly.Orioloetal.[39],[40]proposedathedifferencesarediscussed.Asexamples,theproposedmodelsmodelforreal-timemapbuild

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。