Probability for Finance and Economics chapter2

Probability for Finance and Economics chapter2

ID:40960695

大?。?48.59 KB

頁數(shù):13頁

時間:2019-08-12

Probability for Finance and Economics chapter2_第1頁
Probability for Finance and Economics chapter2_第2頁
Probability for Finance and Economics chapter2_第3頁
Probability for Finance and Economics chapter2_第4頁
Probability for Finance and Economics chapter2_第5頁
資源描述:

《Probability for Finance and Economics chapter2》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學術(shù)論文-天天文庫。

1、MA313ProbabilityforFinanceandEconomics§2RandomVariablesandExpectationsGrahamBrightwellOctober2005References:GrimmettandStirzaker,ProbabilityandRandomProcesses,Chapters2–4,isgoodforaccuratedescription,butdoesnottreattheexpectationingeneral.AtreatmentveryclosetotheonehereisinChapters3and4ofRosenth

2、al’sAFirstLookatRigorousProbabilityTheory.AnothergoodsourceisWilliams,ProbabilitywithMartingales,Chapters3and6.Youmightalsowanttoreadpp28-42ofBinghamandKiesel,Risk-NeutralValuation:PricingandHedgingofFinancialDerivatives.ThereismoreinthenotesthanIplantocoverinthelectures.Thedefaultpositionisthat

3、anythingnotcoveredinlecturesisnotexaminable.1MeasurablefunctionsWearegoingtorestrictourattentionprettymuchentirelytoreal-valuedfunctions,butinafewplacesitwillpaytoallowourfunctionstotakethevalues+∞and?∞.Weneedtotreatthesesymbolswithcaution,andnotjustasordinarynumbers.LetR?bethesetR∪{+∞,?∞}.Weare

4、notgoingtoattempttode?neafullarithmeticonR?,butnaturallyweset+∞>x>?∞foranyrealnumberx.Thenotation[0,∞)meansthesetofnon-negativereals,while[0,∞]=[0,∞)∪{+∞}?R?.De?nition1.1.LetFbeaσ-?eldofsubsetsof?.Afunctionf:?→R?isF-measurableifallthesets{ω∈?:f(ω)≤a},fora∈R?,areinF.Roughlyspeaking,afunctionfisF-

5、measurableiftheσ-?eldFis“richenough”tocontainalltheimportantinformationaboutthevalueoff.Example1.IfF=P(?),everyfunctionfrom?toR?isF-measurable.Example2.IfF={?,?},onlytheconstantfunctionsareF-measurable.(Checkthisasanexercise.)Example3.Suppose?=[0,1),andF=B,thefamilyofBorelsets.Consider?rstthefun

6、ctionf:?→Rde?nedbyf(ω)=ω.Then{ω∈?:f(ω)≤a}=[0,a],for0≤a<1,andtheclosedinterval[0,a]isaBorelset.Ifa<0,then{ω∈?:f(ω)≤a}=?,whereasifa≥1,then{ω∈?:f(ω)≤a}=[0,1),inbothcasesBorelsets.ThereforefisB-measurable.1Moregenerally,letf:[0,1)→Rbeanycontinuousfunctionand,forany?xedrealnumbera,considerSa={ω∈?:f(ω

7、)>a}.Supposeω0∈Sa,sothatε=f(ω0)?a>0.Sincefiscontinuous,thereissomeδ>0suchthat,wheneverω∈?and

8、ω?ω0

9、<δ,wehave

10、f(ω)?f(ω0)

11、<ε,whichimpliesf(ω)>a.Thismeansthattheinterval(ω0?δ,ω0+δ)∩?iscontainedinSa.SuchasetS,withthepropertythat,

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。