資源描述:
《Topological Quantum Field Theory and Four Manifolds - Jose Labastida》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、TOPOLOGICALQUANTUMFIELDTHEORYANDFOURMANIFOLDSMATHEMATICALPHYSICSSTUDIESEditorialBoard:MaximKontsevich,IHES,Bures-sur-Yvette,FranceMassimoPorrati,NewYorkUniversity,NewYork,U.S.A.VladimirMatveev,UniversitéBourgogne,Dijon,FranceDanielSternheimer,UniversitéBourgogn
2、e,Dijon,FranceVOLUME25TopologicalQuantumFieldTheoryandFourManifoldsbyJOSELABASTIDAandMARCOSMARINOAC.I.P.CataloguerecordforthisbookisavailablefromtheLibraryofCongress.ISBN1-4020-3058-4(HB)ISBN1-4020-3177-7(e-book)PublishedbySpringer,P.O.Box17,3300AADordrecht,The
3、Netherlands.SoldanddistributedinNorth,CentralandSouthAmericabySpringer,101PhilipDrive,Norwell,MA02061,U.S.A.Inallothercountries,soldanddistributedbySpringer,P.O.Box322,3300AHDordrecht,TheNetherlands.Printedonacid-freepaperAllRightsReserved?2005SpringerNopartoft
4、hisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,microfilming,recordingorotherwise,withoutwrittenpermissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecificallyforthepurposeofbein
5、genteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework.PrintedintheNetherlands.TableofContentsPreface............................vii1.TopologicalAspectsofFour-Manifolds.............11.1.Homologyandcohomology................11.2.Theintersect
6、ionform..................21.3.Self-dualandanti-self-dualforms..............41.4.Characteristicclasses...................51.5.Examplesoffour-manifolds.Complexsurfaces........61.6.SpinandSpinc-structuresonfour-manifolds.........92.TheTheoryofDonaldsonInvariants..
7、............122.1.Yang–Millstheoryonafour-manifold...........122.2.SU(2)andSO(3)bundles.................142.3.ASDconnections.....................162.4.Reducibleconnections..................182.5.Alocalmodelforthemodulispace.............192.6.Donaldsoninvariants
8、...................222.7.Metricdependence....................273.TheTheoryofSeiberg–WittenInvariants............313.1.TheSeiberg–Wittenequations...............313.2.TheSeibe