2011數(shù)學一考研大綱

2011數(shù)學一考研大綱

ID:42379716

大?。?74.50 KB

頁數(shù):12頁

時間:2019-09-14

2011數(shù)學一考研大綱_第1頁
2011數(shù)學一考研大綱_第2頁
2011數(shù)學一考研大綱_第3頁
2011數(shù)學一考研大綱_第4頁
2011數(shù)學一考研大綱_第5頁
資源描述:

《2011數(shù)學一考研大綱》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在教育資源-天天文庫。

1、2011年與2010年考研數(shù)學大綱變化對比表——數(shù)一 章節(jié)2010年數(shù)學考試大綱考試內(nèi)容和考試要求2011年數(shù)學考試大綱考試內(nèi)容和考試要求變化對比高等數(shù)學一、函數(shù)、極限、連續(xù)考試內(nèi)容函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形 初等函數(shù) 函數(shù)關系的建立數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限和右極限 無窮小量和無窮大量的概念及其關系 無窮小量的性質(zhì)及無窮小量的比較 極限的四則運算 極限存在的兩個準則:單調(diào)有界準則和夾逼準則 兩個重要極限:函數(shù)連續(xù)的概念 函數(shù)間斷點的類型 初等函數(shù)的連續(xù)性 閉

2、區(qū)間上連續(xù)函數(shù)的性質(zhì)考試要求  1.理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應用問題的函數(shù)關系.  2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.  3.理解復合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.  4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.  5.理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限之間的關系.  6.掌握極限的性質(zhì)及四則運算法則.  7.掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法.  8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限. 

3、 9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型.考試內(nèi)容函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形 初等函數(shù) 函數(shù)關系的建立數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限和右極限 無窮小量和無窮大量的概念及其關系 無窮小量的性質(zhì)及無窮小量的比較 極限的四則運算 極限存在的兩個準則:單調(diào)有界準則和夾逼準則 兩個重要極限:函數(shù)連續(xù)的概念 函數(shù)間斷點的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)考試要求  1.理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應用問題的函數(shù)關系.  2

4、.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.  3.理解復合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.  4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.  5.理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限之間的關系.  6.掌握極限的性質(zhì)及四則運算法則.  7.掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法.  8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限.  9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型.  10.了解連續(xù)函數(shù)的性質(zhì)和

5、初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應用這些性質(zhì).對比:無變化本章的重點內(nèi)容之一是極限,考生不僅要準確的理解極限的概念和極限存在的充要條件,而且還要能正確求出各種極限,由于篇幅所限,有關求極限的各種方法和本章的其它考點,詳見由高等教育出版社出版的《2011年全國碩士研究生入學統(tǒng)一考試數(shù)學考試大綱配套強化指導》第二部分,第一篇,第一章函數(shù)、極限、連續(xù)?! ?0.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應用這些性質(zhì).二、一元函數(shù)微分學考試內(nèi)容導數(shù)和微分的

6、概念 導數(shù)的幾何意義和物理意義 函數(shù)的可導性與連續(xù)性之間的關系 平面曲線的切線和法線 導數(shù)和微分的四則運算基本初等函數(shù)的導數(shù) 復合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法 高階導數(shù)一階微分形式的不變性 微分中值定理 洛必達(L’Hospital)法則 函數(shù)單調(diào)性的判別函數(shù)的極值 函數(shù)圖形的凹凸性、拐點及漸近線 函數(shù)圖形的描繪 函數(shù)的最大值與最小值 弧微分 曲率的概念 曲率圓與曲率半徑考試要求1.理解導數(shù)和微分的概念,理解導數(shù)與微分的關系,理解導數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導數(shù)的物理意義,會用導數(shù)描述一些物理量,理解函數(shù)的可導性與連續(xù)性之

7、間的關系.2.掌握導數(shù)的四則運算法則和復合函數(shù)的求導法則,掌握基本初等函數(shù)的導數(shù)公式.了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分.3.了解高階導數(shù)的概念,會求簡單函數(shù)的高階導數(shù).4.會求分段函數(shù)的導數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導數(shù).5.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理.6.掌握用洛必達法則求未定式極限的方法.7.理解函數(shù)的極值概念,掌握用導數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。