資源描述:
《Mathematical Statistics - Jun Shaochap6》由會員上傳分享,免費在線閱讀,更多相關內容在學術論文-天天文庫。
1、Chapter6HypothesisTestsAgeneraltheoryoftestinghypothesesispresentedinthischapter.LetXbeasamplefromapopulationPinP,afamilyofpopulations.BasedontheobservedX,wetestagivenhypothesisH0:P∈P0versusH1:P∈P1,whereP0andP1aretwodisjointsubsetsofPandP0∪P1=P.Notationalconventionsandbasicc
2、oncepts(suchastwotypesoferrors,signi?cancelevels,andsizes)giveninExample2.20and§2.4.2areusedinthischapter.6.1UMPTestsAtestforahypothesisisastatisticT(X)takingvaluesin[0,1].WhenX=xisobserved,werejectH0withprobabilityT(x)andacceptH0withprobability1?T(x).IfT(X)=1or0a.s.P,thenT(
3、X)isanonrandomizedtest.OtherwiseT(X)isarandomizedtest.ForagiventestT(X),thepowerfunctionofT(X)isde?nedtobeβT(P)=E[T(X)],P∈P,(6.1)whichisthetypeIerrorprobabilityofT(X)whenP∈P0andoneminusthetypeIIerrorprobabilityofT(X)whenP∈P1.Aswediscussedin§2.4.2,withasampleofa?xedsize,weare
4、notabletominimizetwoerrorprobabilitiessimultaneously.OurapproachinvolvesmaximizingthepowerβT(P)overallP∈P1(i.e.,minimizingthetypeIIerrorprobability)andoveralltestsTsatisfyingsupβT(P)≤α,(6.2)P∈P0whereα∈[0,1]isagivenlevelofsigni?cance.Recallthattheleft-handsideof(6.2)isde?nedt
5、obethesizeofT.3933946.HypothesisTestsDe?nition6.1.AtestT?ofsizeαisauniformlymostpowerful(UMP)testifandonlyifβT?(P)≥βT(P)forallP∈P1andToflevelα.IfU(X)isasu?cientstatisticforP∈P,thenforanytestT(X),E(T
6、U)hasthesamepowerfunctionasTand,therefore,to?ndaUMPtestwemayconsiderteststha
7、tarefunctionsofUonly.TheexistenceandcharacteristicsofUMPtestsarestudiedinthissec-tion.6.1.1TheNeyman-PearsonlemmaAhypothesisH0(orH1)issaidtobesimpleifandonlyifP0(orP1)containsexactlyonepopulation.Thefollowingusefulresult,whichhasalreadybeenusedonceintheproofofTheorem4.16,pro
8、videstheformofUMPtestswhenbothH0andH1aresimple.Theorem6.1(Neyman-Pearsonlemma).SupposethatP0={P0}andP1={P1}.Letfjbethep.d.f.ofPjw.r.t.aσ-?nitemeasureν(e.g.,ν=P0+P1),j=0,1.(i)(ExistenceofaUMPtest).Foreveryα,thereexistsaUMPtestofsizeα,whichisequalto??1f1(X)>cf0(X)T?(X)=γf1(X)=
9、cf0(X)(6.3)?0f1(X)