資源描述:
《故障診斷_機(jī)械儀表_工程科技_專業(yè)資料》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。
1、《機(jī)械故障診斷技術(shù)》讀書報告電機(jī)軸承故障診斷ThefaultdiagnosisofMotorbearing學(xué)院:機(jī)械與汽車工程學(xué)院專業(yè):測控技術(shù)與儀器班級:13級測控班姓名:晁好剛學(xué)號:1302315026指導(dǎo)教師:鄭冬學(xué)年學(xué)期:2016-2017學(xué)年第一學(xué)期摘要電機(jī)是礦山最重要的設(shè)備之一,它的可靠運(yùn)行直接關(guān)系到礦廠的安全生產(chǎn)和經(jīng)濟(jì)效益,對其進(jìn)行監(jiān)控與故障診斷能給電機(jī)提供對靠保證,所以設(shè)計一種可靠性能優(yōu)良的狀態(tài)監(jiān)控與故障診斷系統(tǒng)具有重要的理論和現(xiàn)實(shí)意義。滾動軸承是電機(jī)的最重要部件Z-,有關(guān)統(tǒng)計農(nóng)明,30%的故障都是由滾動軸承的故障引起的。本文主要通過對滾動軸承振動狀態(tài)的監(jiān)控
2、,進(jìn)而達(dá)到故障診斷的口的。論文屮對滾動軸承的故障形式、故障原因、常用診斷方法等診斷基礎(chǔ)和滾動軸承故障的振動機(jī)理作了研究。利用研華公司牛產(chǎn)的PCI-1710IIG作為數(shù)據(jù)采集卡,結(jié)合加速度計LC0159和信號調(diào)理電路等進(jìn)行了硬件設(shè)計。利用虛擬儀器仿真軟件LabVIEW設(shè)計了和應(yīng)的數(shù)據(jù)采集軟件和故障檢測軟件。通過對滾動軸承振動信號的研究,提出了一種基丁?小波包嫡和聚類分析的故障診斷方法,為了證明方法的有效性,將小波包爛和聚類分析的方法應(yīng)用于美國西儲大學(xué)軸承實(shí)驗(yàn)進(jìn)行故障診斷。研究結(jié)果表明該方法在進(jìn)行滾動軸承故障識別時,其識別率比釆用K-moans進(jìn)行識別的識別率要大的多。結(jié)合故障
3、診斷的特點(diǎn),利用虛擬儀器軟件LabVIEW和MATLAB工具箱設(shè)計實(shí)現(xiàn)了一個遠(yuǎn)程電機(jī)軸承故障診斷系統(tǒng)。關(guān)鍵詞:K-means;故障診斷滾動軸承AbstractMotoristhemostimportantequipmentofmine,anditsreliableoperationisdirectlyrelatedwiththerefinery'ssafetyandeconomicefficiency.Thereliabilityofmotorcanbeimprovedbymonitoringandfaultdiagnosis.Soitissignificanttodesi
4、gnareliablemonitoringandfaultdiagnosissystem?Rollingbearingisoneofthemostimportantcomponentsofminemotor.Therelevantstatisticsshowsthat30%ofthemotorfaultsarecausedbytherollingbearing.Inthispaper,itismaintomonitortherollingbearingvibrationconditiontoreachthepurposeoffaultdiagnosis.Sothemecha
5、nismofrollingbearingfaultvibrationandsomediagnosticbasiswhichincludestheformofrollingbearingfault,faultreasons,commondiagnosticmethodsarestudiedinthethesis.ThehardwarewasdesignedbythedatacollectioncardPCM71OHGproducedbyYanhuacompany,combiningwiththeaccelerometerLC0159andthesignaldisposal.T
6、hecorrespondingdatacollectionsoftwareandfaultdetectionsoftwareweredesignedthroughthevirtualinstrumentsLabVIEW.Anensembleapproachbasedonwaveletpacketentropyandclusteringanalysisispresentedtodiagnosefaultsintherollingbearingvibrationsignalresearch?thewaveletpacketentropyandclusteringanalysis
7、approachwereappliedinbearingfaultdiagnosisexperimentofWestReserveUniversity.TheexperimentalresultsshowthattherecognitionrateoftheproposedapproachismuchhigherthantheK-mcansinrollingbearingfaultrecognition?Keywords:K-means;Faultdiagnosis;Rollingbearing口錄緒論1第一章課題