資源描述:
《數(shù)學(xué)人教版八年級(jí)下冊(cè)十七章 勾股定理 1》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在應(yīng)用文檔-天天文庫(kù)。
1、第十七章勾股定理17.1勾股定理(一)一.教學(xué)目標(biāo)1.了解勾股定理的發(fā)現(xiàn)過(guò)程,掌握勾股定理的內(nèi)容,會(huì)用面積法證明勾股定理。2.培養(yǎng)在實(shí)際生活中發(fā)現(xiàn)問題總結(jié)規(guī)律的意識(shí)和能力。3.介紹我國(guó)古代在勾股定理研究方面所取得的成就,激發(fā)學(xué)生的愛國(guó)熱情,促其勤奮學(xué)習(xí)。二.重點(diǎn),難點(diǎn)1.重點(diǎn):勾股定理的內(nèi)容及證明。2.難點(diǎn):勾股定理的證明。三:課堂引入目前世界上許多科學(xué)家正在試圖尋找其他星球的“人”,為此向宇宙發(fā)出了許多信號(hào),如地球上人類的語(yǔ)言、音樂、各種圖形等。我國(guó)數(shù)學(xué)家華羅庚曾建議,發(fā)射一種反映勾股定理的圖形,如果宇宙
2、人是“文明人”,那么他們一定會(huì)識(shí)別這種語(yǔ)言的。這個(gè)事實(shí)可以說(shuō)明勾股定理的重大意義。尤其是在兩千年前,是非常了不起的成就。讓學(xué)生畫一個(gè)直角邊為3cm和4cm的直角△ABC,用刻度尺量出AB的長(zhǎng)。以上這個(gè)事實(shí)是我國(guó)古代3000多年前有一個(gè)叫商高的人發(fā)現(xiàn)的,他說(shuō):“把一根直尺折成直角,兩段連結(jié)得一直角三角形,勾廣三,股修四,弦隅五。”這句話意思是說(shuō)一個(gè)直角三角形較短直角邊(勾)的長(zhǎng)是3,長(zhǎng)的直角邊(股)的長(zhǎng)是4,那么斜邊(弦)的長(zhǎng)是5。再畫一個(gè)兩直角邊為5和12的直角△ABC,用刻度尺量AB的長(zhǎng)。你是否發(fā)現(xiàn)32+
3、42與52的關(guān)系,52+122和132的關(guān)系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。對(duì)于任意的直角三角形也有這個(gè)性質(zhì)嗎?相傳2500年前,畢達(dá)哥拉斯有一次在朋友家做客時(shí),發(fā)現(xiàn)朋友家的用磚鋪成的地面中反映了直角三角形的某種數(shù)量關(guān)系探究活動(dòng)一:觀察圖1正方形中反映了直角三角形的某種數(shù)量關(guān)系A(chǔ)中含有個(gè)小方格,即A的面積是個(gè)單位面積。探究活動(dòng)二:出示圖片.探究三個(gè)正方形面積的關(guān)系分析填表數(shù)據(jù),你發(fā)現(xiàn)了什么?A的面積B的面積C的面積左圖4913右圖16925結(jié)論四.例題學(xué)習(xí)例1(補(bǔ)充)已
4、知:在△ABC中,∠C=90°,∠A、∠B、∠C的對(duì)邊為a、b、c。求證:a2+b2=c2。分析:⑴讓學(xué)生準(zhǔn)備多個(gè)三角形模型,最好是有顏色的吹塑紙,讓學(xué)生拼擺不同的形狀,利用面積相等進(jìn)行證明。⑵拼成如圖所示,其等量關(guān)系為:4S△+S小正=S大正4×ab+(b-a)2=c2,化簡(jiǎn)可證。⑶發(fā)揮學(xué)生的想象能力拼出不同的圖形,進(jìn)行證明。⑷勾股定理的證明方法,達(dá)300余種。這個(gè)古老的精彩的證法,出自我國(guó)古代無(wú)名數(shù)學(xué)家之手。激發(fā)學(xué)生的民族自豪感,和愛國(guó)情懷。例2已知:在△ABC中,∠C=90°,∠A、∠B、∠C的對(duì)邊為
5、a、b、c。求證:a2+b2=c2。分析:左右兩邊的正方形邊長(zhǎng)相等,則兩個(gè)正方形的面積相等。左邊S=4×ab+c2右邊S=(a+b)2左邊和右邊面積相等,即4×ab+c2=(a+b)2化簡(jiǎn)可證。五.課堂練習(xí)1.勾股定理的具體內(nèi)容是:。2.如圖,直角△ABC的主要性質(zhì)是:∠C=90°,(用幾何語(yǔ)言表示)⑴兩銳角之間的關(guān)系:;⑵若D為斜邊中點(diǎn),則斜邊中線;⑶若∠B=30°,則∠B的對(duì)邊和斜邊:;⑷三邊之間的關(guān)系:。3.△ABC的三邊a、b、c,若滿足b2=a2+c2,則=90°;若滿足b2>c2+a2,則∠B是
6、角;若滿足b2<c2+a2,則∠B是角。六.小結(jié)勾股定理直角三角形中直角邊a和b,斜邊c那么a2+b2=c2七.課后練習(xí)作業(yè)1.已知在Rt△ABC中,∠B=90°,a、b、c是△ABC的三邊,則⑴c=。(已知a,b,求c)⑵a=。(已知b,c,求a)⑶b=。(已知a、c,求b)2.在△ABC中,∠BAC=120°,AB=AC=cm,一動(dòng)點(diǎn)P從B向C以每秒2cm的速度移動(dòng),問當(dāng)P點(diǎn)移動(dòng)多少秒時(shí),PA與腰垂直。求證:⑴AD2-AB2=BD·CD⑵若D在CB上,結(jié)論如何,試證明你的結(jié)論。