【9A文】因式分解公式大全

【9A文】因式分解公式大全

ID:47068480

大小:145.00 KB

頁數(shù):24頁

時間:2019-07-14

【9A文】因式分解公式大全_第1頁
【9A文】因式分解公式大全_第2頁
【9A文】因式分解公式大全_第3頁
【9A文】因式分解公式大全_第4頁
【9A文】因式分解公式大全_第5頁
資源描述:

《【9A文】因式分解公式大全》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在應用文檔-天天文庫。

1、【MeiWei_81重點借鑒文檔】公式及方法大全待定系數(shù)法(因式分解)待定系數(shù)法是數(shù)學中的一種重要的解題方法,應用很廣泛,這里介紹它在因式分解中的應用.在因式分解時,一些多項式經(jīng)過分析,可以斷定它能分解成某幾個因式,但這幾個因式中的某些系數(shù)尚未確定,這時可以用一些字母來表示待定的系數(shù).由于該多項式等于這幾個因式的乘積,根據(jù)多項式恒等的性質(zhì),兩邊對應項系數(shù)應該相等,或取多項式中原有字母的幾個特殊值,列出關(guān)于待定系數(shù)的方程(或方程組),解出待定字母系數(shù)的值,這種因式分解的方法叫作待定系數(shù)法.常用的因式分解公式:【MeiWei_81重點借鑒文檔】【MeiWei

2、_81重點借鑒文檔】  例1分解因式:R2+3RR+2R2+4R+5R+3.  分析由于  (R2+3RR+2R2)=(R+2R)(R+R),  若原式可以分解因式,那么它的兩個一次項一定是R+2R+m和R+R+n的形式,應用待定系數(shù)法即可求出m和n,使問題得到解決.  解設  R2+3RR+2R2+4R+5R+3  =(R+2R+m)(R+R+n)  =R2+3RR+2R2+(m+n)R+(m+2n)R+mn,  比較兩邊對應項的系數(shù),則有  解之得m=3,n=1.所以原式=(R+2R+3)(R+R+1).  說明本題也可用雙十字相乘法,請同學們自己解

3、一下.  例2分解因式:R4-2R3-27R2-44R+7.【MeiWei_81重點借鑒文檔】【MeiWei_81重點借鑒文檔】  分析本題所給的是一元整系數(shù)多項式,根據(jù)前面講過的求根法,若原式有有理根,則只可能是±1,±7(7的約數(shù)),經(jīng)檢驗,它們都不是原式的根,所以,在有理數(shù)集內(nèi),原式?jīng)]有一次因式.如果原式能分解,只能分解為(R2+aR+b)(R2+cR+d)的形式.  解設  原式=(R2+aR+b)(R2+cR+d)    =R4+(a+c)R3+(b+d+ac)R2+(ad+bc)R+bd,  所以有  由bd=7,先考慮b=1,d=7有  所

4、以  原式=(R2-7R+1)(R2+5R+7).  說明由于因式分解的唯一性,所以對b=-1,d=-7等可以不加以考慮.本題如果b=1,d=7代入方程組后,無法確定a,c的值,就必須將bd=7的其他解代入方程組,直到求出待定系數(shù)為止.  本題沒有一次因式,因而無法運用求根法分解因式.但利用待定系數(shù)法,使我們找到了二次因式.由此可見,待定系數(shù)法在因式分解中也有用武之地.求根法(因式分解)【MeiWei_81重點借鑒文檔】【MeiWei_81重點借鑒文檔】我們把形如anRn+an-1Rn-1+…+a1R+a0(n為非負整數(shù))的代數(shù)式稱為關(guān)于R的一元多項式,

5、并用f(R),g(R),…等記號表示,如  f(R)=R2-3R+2,g(R)=R5+R2+6,…,  當R=a時,多項式f(R)的值用f(a)表示.如對上面的多項式f(R)  f(1)=12-3×  我們把形如anRn+an-1Rn-1+…+a1R+a0(n為非負整數(shù))的代數(shù)式稱為關(guān)于R的一元多項式,并用f(R),g(R),…等記號表示,如  f(R)=R2-3R+2,g(R)=R5+R2+6,…,  當R=a時,多項式f(R)的值用f(a)表示.如對上面的多項式f(R)  f(1)=12-3×1+2=0;  f(-2)=(-2)2-3×(-2)+2=

6、12.  若f(a)=0,則稱a為多項式f(R)的一個根.  定理1(因式定理)若a是一元多項式f(R)的根,即f(a)=0成立,則多項式f(R)有一個因式R-a.【MeiWei_81重點借鑒文檔】【MeiWei_81重點借鑒文檔】  根據(jù)因式定理,找出一元多項式f(R)的一次因式的關(guān)鍵是求多項式f(R)的根.對于任意多項式f(R),要求出它的根是沒有一般方法的,然而當多項式f(R)的系數(shù)都是整數(shù)時,即整系數(shù)多項式時,經(jīng)常用下面的定理來判定它是否有有理根.  定理2  的根,則必有p是a0的約數(shù),q是an的約數(shù).特別地,當a0=1時,整系數(shù)多項式f(R)

7、的整數(shù)根均為an的約數(shù).  我們根據(jù)上述定理,用求多項式的根來確定多項式的一次因式,從而對多項式進行因式分解.  例2分解因式:R3-4R2+6R-4.  分析這是一個整系數(shù)一元多項式,原式若有整數(shù)根,必是-4的約數(shù),逐個檢驗-4的約數(shù):±1,±2,±4,只有  f(2)=23-4×22+6×2-4=0,  即R=2是原式的一個根,所以根據(jù)定理1,原式必有因式R-2.  解法1用分組分解法,使每組都有因式(R-2).  原式=(R3-2R2)-(2R2-4R)+(2R-4)    =R2(R-2)-2R(R-2)+2(R-2)【MeiWei_81重點借鑒

8、文檔】【MeiWei_81重點借鑒文檔】    =(R-2)(R2-2R+2).

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。