資源描述:
《面向智能視頻監(jiān)控的人臉跟蹤算法研究》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫(kù)。
1、面向智能視頻監(jiān)控的人臉跟蹤算法研究扌商要針對(duì)目前運(yùn)動(dòng)目標(biāo)檢測(cè)與跟蹤技術(shù)的發(fā)展現(xiàn)狀,論文基于OpenCV開源計(jì)算機(jī)視覺(jué)庫(kù)和VisualStudio2013發(fā)平臺(tái),以視頻序列中的運(yùn)動(dòng)目標(biāo)為對(duì)象,采用多種數(shù)字圖像處理技術(shù)對(duì)獲取圖像進(jìn)行預(yù)處理,改進(jìn)冃標(biāo)檢測(cè)算法提高檢測(cè)過(guò)程的實(shí)時(shí)性和有效性,優(yōu)化跟蹤處理算法實(shí)現(xiàn)S標(biāo)的快速和準(zhǔn)確跟蹤。文章首先在緒論部分主要對(duì)木文的研究背景及意義進(jìn)行闡述,闡述當(dāng)前的社會(huì)背景下,研究和分析智能視頻監(jiān)控的人臉跟蹤算法研究的價(jià)值和意義。然后對(duì)人臉跟蹤的相關(guān)概念、人臉跟蹤的算法分類以
2、及本文重點(diǎn)研究的Camshift進(jìn)行簡(jiǎn)要的概述,為木文的硏究奠定一定的理論基礎(chǔ)。接著重點(diǎn)對(duì)Camshift算法的原理以及優(yōu)缺點(diǎn),結(jié)合Kalman算法進(jìn)行改進(jìn)設(shè)計(jì)。最后結(jié)合OPENCV技術(shù),構(gòu)建實(shí)驗(yàn)環(huán)境、設(shè)計(jì)實(shí)驗(yàn)方案,對(duì)改進(jìn)Z后的Camshift算法和經(jīng)典的Camshift算法的人臉跟蹤效果進(jìn)行對(duì)比分析。關(guān)鍵詞人臉跟蹤;OpenCV;CamshiftAbstract:Accordingtothecurrentsituationofthedevelopmentofmovingtargetdetect
3、ionandtrackingtechnologyatpresent,theOpenCVopensourcecomputervisionlibraryandVisualStudio2013developmentplatformbasedonthemovingobjectinvideosequencesastheobject,toobtainimagepreprocessingusingavarietyofdigitalimageprocessingtechnology,theimprovedtar
4、getdetectionalgorithmtoimprovethereal-timeandeffectivenessofthedetectionprocess.Optimizationoftrackingfastandaccuratetrackingalgorithmtoachievethetarget.Inthefirstpartofthispaper,theresearchbackgroundandsignificaneeofthispaperarediscussed,andthevalue
5、andsignificanceoftheresearchandanalysisofthehumantrackingalgorithmforintelligentvideosurveillanceareintroduced.Then,theconceptoffacetracking,theclassificationalgorithmofhumanfacetracking,andtheCamshift,whichisthefocusofthispaper,arebrieflysummarized,
6、whichlaysatheoreticalfoundationfortheresearchofthispaper.Then,focusingontheprinciplesandadvantagesanddisadvantagesofCamshiftalgorithm,combinedwithKalmanalgorithmforimproveddesign.Finally,OPENCVtechnologyisusedtobuildtheexperimentalenvironmentanddesig
7、ntheexperimentalscheme?TheimprovedCamshiftalgorithmandtheclassicalCamshiftalgorithmarecomparedandanalyzed.Keywords:facetracking;OpenCV;Camshift目錄111第1章緒論11.1研究背景及意義11.2國(guó)內(nèi)外研究綜述11.3主要研究?jī)?nèi)容2第2章智能視頻監(jiān)控中人臉跟蹤算法的相關(guān)概述42.1人臉跟蹤的相關(guān)概念42.2人臉跟蹤的算法分類52.3Camshift算法的相關(guān)
8、概述6第3章基于Camshift算法的人臉跟蹤分析83?1Camshift算法簡(jiǎn)介83.2Camshift算法的改進(jìn)設(shè)計(jì)9第4章人臉跟蹤的實(shí)驗(yàn)設(shè)計(jì)及結(jié)果分析134.1OpenCV技術(shù)概述134.2本文對(duì)OpenCV的配置錯(cuò)誤!未定義書簽。4.3跟蹤方案設(shè)計(jì)144.4實(shí)驗(yàn)結(jié)果分析15第5章結(jié)論與展望175.1結(jié)論175.2展望17參考文獻(xiàn)19第1章緒論1?1研究背景及意義計(jì)算機(jī)視覺(jué)在各個(gè)領(lǐng)域都有著廣泛的應(yīng)用。近些年來(lái),隨著處理器速度的不斷提升,制造成本不斷降低,以及各種嵌入式系統(tǒng)的廣發(fā)應(yīng)用,使得計(jì)