極限環(huán)和平面圖貌.pdf

極限環(huán)和平面圖貌.pdf

ID:48006507

大?。?04.97 KB

頁(yè)數(shù):18頁(yè)

時(shí)間:2020-01-12

極限環(huán)和平面圖貌.pdf_第1頁(yè)
極限環(huán)和平面圖貌.pdf_第2頁(yè)
極限環(huán)和平面圖貌.pdf_第3頁(yè)
極限環(huán)和平面圖貌.pdf_第4頁(yè)
極限環(huán)和平面圖貌.pdf_第5頁(yè)
資源描述:

《極限環(huán)和平面圖貌.pdf》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫(kù)。

1、OrdinaryDifferentialEquationsChapter6§6.4極限環(huán)和平面圖貌6.4.1極限環(huán)例一階非線性駐定方程組?dx22=??yxxy(1+?)??dt??dy22=?xyxy(1+?)??dt取極坐標(biāo)x=rycos,θ=rsinθ?dr2=?rr(1),??dt??dθ?=1??dtOrdinaryDifferentialEquations(2013-2014(1))OrdinaryDifferentialEquationsChapter6?dr2方程組有兩個(gè)特解??=rr(1?)dt??(1)0,rt

2、=θ=?t00,t≥t,奇點(diǎn);?dθ=1??dt(2)1,rt==?≥θt00,tt,以單位圓為軌線的周期解,周期為2π且沿逆時(shí)針?lè)较蛐D(zhuǎn)。dr2dθ沿圓RR=<1,=?>RR(1)0,=>10111dtdt*rR==1θθ軌線按逆時(shí)針?lè)较驈膱ArR=1上走出圓外;dr2dθ沿圓RR=>1,=?10222dtdt*rR==2θθ軌線按逆時(shí)針?lè)较驈膱ArR=2上走到圓內(nèi)。OrdinaryDifferentialEquations(2013-2014(1))OrdinaryDifferentialEquationsCh

3、apter6R2R1r=1注:孤立的周期閉軌r=1稱為極限環(huán)OrdinaryDifferentialEquations(2013-2014(1))OrdinaryDifferentialEquationsChapter6設(shè)Γ是系統(tǒng)?dx=f(,)xy??dt?dy?=g(,)xy??dt的一個(gè)極限環(huán),如果存在著Γ的一個(gè)δ鄰域,使從此鄰域內(nèi)出發(fā)的其它解均正向()t→+∞趨近于Γ,則稱Γ為穩(wěn)定的極限環(huán)。如果其它解均負(fù)向()t→?∞趨近于Γ,則稱Γ為不穩(wěn)定的極限環(huán)。如果從Γ的δ鄰域出發(fā)的其它軌線在Γ的一側(cè)正向趨近于Γ,另一側(cè)負(fù)向趨近于Γ

4、,則稱此Γ為半穩(wěn)定的極限環(huán)。OrdinaryDifferentialEquations(2013-2014(1))OrdinaryDifferentialEquationsChapter6定理8Poincare-Bendixson環(huán)域定理設(shè)區(qū)域G是由兩條簡(jiǎn)單閉曲線ll,圍成的12環(huán)形域并且滿足下面條件:(1)G及其邊界ll,上不含奇點(diǎn);12(2)從G的邊界ll,上各點(diǎn)出發(fā)的軌線都不能12離開(或進(jìn)入);G(3)ll12,均不是閉軌線.則在G內(nèi)至少存在一個(gè)外穩(wěn)定閉軌和一個(gè)內(nèi)穩(wěn)定閉軌(一個(gè)外不穩(wěn)定閉軌和一個(gè)內(nèi)不穩(wěn)定的閉軌),如果閉軌是

5、惟一的,則它一定是一條穩(wěn)定的(不穩(wěn)定的)極限環(huán)。OrdinaryDifferentialEquations(2013-2014(1))OrdinaryDifferentialEquationsChapter6定理9設(shè)系統(tǒng)?dx=f(,)xy??dt?dy?=g(,)xy??dt的右端函數(shù)f(,)xy,gxy(,)在某個(gè)單連域D內(nèi)?f(,)xyg?(,)xy連續(xù)可微,并且+??xy在D內(nèi)不變號(hào),且在D的任何子域內(nèi)不恒為零,?dx=f(,)xy??則方程組dt在D內(nèi)不存在任何閉軌線。?dy?=g(,)xy??dtOrdinaryDif

6、ferentialEquations(2013-2014(1))OrdinaryDifferentialEquationsChapter6定理9*對(duì)于方程組?dx=f(,)xy??dtDulac函數(shù)?dy?=gxy(,)??dt若在某個(gè)單連域D內(nèi)存在一個(gè)連續(xù)可微函數(shù)??B(,),xy使得()()BfB+g??xy不變號(hào),且在D的任何子域中不恒為零,則方程組不存在全部位于D內(nèi)的閉軌線。OrdinaryDifferentialEquations(2013-2014(1))OrdinaryDifferentialEquationsCha

7、pter6定理9**如果沿著系統(tǒng)?dx=f(,)xy??dt?dy?=gxy(,)??dt的極限環(huán)Γ有T??fxtyt((),())gxtyt((),())∫(+)dt<>0(0)??xy0則Γ是穩(wěn)定(不穩(wěn)定)的.其中是的TΓ周期。OrdinaryDifferentialEquations(2013-2014(1))OrdinaryDifferentialEquationsChapter6例1討論非線性方程組?dx2222=?y0.05(xxy+?1)(xy+?4)??dt??dy=??x0.05(yxy22+?1)(xy22+?

8、4)??dt?xr=cosθ引入極坐標(biāo)??yr=sinθ后產(chǎn)生的極限環(huán)Γ1:1r=及Γ=2:2r的穩(wěn)定性。OrdinaryDifferentialEquations(2013-2014(1))目錄上頁(yè)下頁(yè)返回結(jié)束OrdinaryDifferenti

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。