資源描述:
《基于神經(jīng)網(wǎng)絡(luò)的電力系統(tǒng)諧波及間諧波檢測(cè)分析.pdf》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫(kù)。
1、基于神經(jīng)網(wǎng)絡(luò)的電力系統(tǒng)諧波及間諧波檢測(cè)分析學(xué)位申請(qǐng)人姓名王趕導(dǎo)師姓名及職稱王d:垡熬援培養(yǎng)單位籃過(guò)堡王太堂專業(yè)名稱電路墨丕統(tǒng)論文提交日期2Qll:Q壘:!Q論文答辯日期2Q!!:Q§:i墨答辯委員會(huì)主席鍪揖瀣RequirementsforthedegreeofMasterofEngineeringlnCircuitsandSystemslnChangshaUniversityofScience&TechnologySupervisorProfessorWangXiaohuaApril,201本人鄭重聲明:所呈交的論文是本人在導(dǎo)師的指導(dǎo)下獨(dú)立進(jìn)行研究所取得的研究成果。
2、除了文中特別加以標(biāo)注引用的內(nèi)容外,本論文不包含任何其他個(gè)人或集體已經(jīng)發(fā)表或撰寫的成果作品。對(duì)本文的研究做出重要貢獻(xiàn)的個(gè)人和集體,均已在文中以明確方式標(biāo)明。本人完全意識(shí)到本聲明的法律后果由本人承擔(dān)。作者簽名:王翻日期:加I『年年月,。日學(xué)位論文版權(quán)使用授權(quán)書(shū)本學(xué)位論文作者完全了解學(xué)校有關(guān)保留、使用學(xué)位論文的規(guī)定,同意學(xué)校保留并向國(guó)家有關(guān)部門或機(jī)構(gòu)送交論文的復(fù)印件和電子版,允許論文被查閱和借閱。本人授權(quán)長(zhǎng)沙理工大學(xué)可以將本學(xué)位論文的全部或部分內(nèi)容編入有關(guān)數(shù)據(jù)庫(kù)進(jìn)行檢索,可以采用影印、縮印或掃描等復(fù)制手段保存和匯編本學(xué)位論文。本學(xué)位論文屬于1、保密口,在——年解密后適用本
3、授權(quán)書(shū)。2、不保密團(tuán)。(請(qǐng)?jiān)谝陨舷鄳?yīng)方框內(nèi)打“√”)作者簽名:王高日期:加If年宰月f。日導(dǎo)師簽名:日期:例/年?duì)幵拢V日ABSTRACTAlongwiththerapiddevelopmentofthemodernindustryandtheinformationtecnnoIogY'electricpower’susersmoreandmorepayattentiontotherequirementsofthequalityofelectricpowerdaybyday.Butnowadayswithextensivelyusingofnonlinearelec
4、tricequipment,theproblemsofelectricpowersystemharmonicandInter’harmonicpollutionhavebecomemoreandmoreserious.Becauseinthepowersystem,nonlinearloadproducednotonlythefundamentalfrequency·sintegralmultipleharmonicbeside,butalsomayproducethefundamentalfrequency’sun.Integralmultiple,meaning
5、inter-harmonic.Harmonicandinter.hamonicdetectionandanalysispreconditionoftheharmonictreatment,preciseha珊onicandInter。harmonicdetectionwillprovidegoodbasisf10rhanIlonictreatment.Inrecentyears,thealgorithmofneuralnetworkcanbewidelyusedinthenarmonlcdetection,throughmultipletrainingthewayr
6、enewalpowervectorrepeatedly,andimproveseffectivelythesignalestimateofthepowersvstem.Thispaperdescribesthecausesofharmonicandharmonicharm,andthecullrentmanagementmethodofharmonictreatment.Alsointroducesthedevelopmenthistoryofartificialneuralnetworktheoryanditscurrentapplicationstatus.In
7、ordertosolvethecurrentproblemsexistedinkindsofharmonicanalysismetnod,aneuralnetworkapproach(NNA)wasproposedforestimatingaccuratelynamonIcsandinter-harmonicsparametersfromthesignalsinpowersystems.Itisalmedatthesysteminwhichthesamplingfrequencycannotbelocked0ntheactualfundamentalfreque