資源描述:
《有限元與數(shù)值方法-講稿6.pdf》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在應用文檔-天天文庫。
1、5.2.平面問題的三角形單元:(1)三節(jié)點三角形單元v3f3y給定一個三角形單元和作用在角點3u3上的六個力,要求得六個角點的位f3x移?;蛘呤且笕切谓屈c發(fā)生指f2y定的位移,在三角形三個角點如何v2u2加力?v2ff1y12x采用瑞雷-里茲法求近似式解u11f1x1TT??UV?????????D???d???p??uds?,?為三角形,Sp為三個頂點2?Sp令?uxyz(,,)????N??aa?,??(,,)xyz??B???TT代入????,a0????B??DBd?????a???p??Nds??Sp其中,?a?是三
2、個頂點的六個位移組成的向量2單元分析(構(gòu)造)3(k)單元內(nèi)任一點位移:22u????x??y??x??xy??y?...12345622v????x??y??x??xy??y?...1234562(j)對節(jié)點1:u1??1??21x??31y1(i)v????x??y112131線性插值—平面對節(jié)點2:u2??1??22x??3y2v????x??y212232u3對節(jié)點3:u????x??y312333u1v????x??y3123333節(jié)點三角形單元:?u????x??yu1232??v????x??y1233?1?u1??1
3、x1y1???1???1??1x1y1??u1??????????????u2????1x2y2??2???2????1x2y2?u2?v3?u???1xy????????1xy?u??3??33??3??3??33??3?3u3v2所以?1??1??1x1y1??u1?u2??????2uxy?,????1xy???2??1xy???1x2y2?u2?v1???????1xyu?3??33??3?1u1??u1????Nxy1?,?N2?xy,?N3?xy,????u2??u形函數(shù)(插值函數(shù))??3??v1??同理:vxy?,?
4、??Nxy1?,?N2?xy,?N3?xy,????v2??v??34三節(jié)點三角形平面單元的形函數(shù)三角形單元形函數(shù)的具體形式為:3(k)1Nxy1?,???a1?bxcy1?1?2A1N2?xy,???a2?bxcy2?2?2(j)2A11(i)N3?xy,???a3?bxcy3?3?2A1xy11其中:1A?1xy2221xy33xy11yxjjjja??b??c?(,,)ijkiiixy11yxkkkk以上系數(shù)可由3x3方陣的逆矩陣的行列式表達推導出5三角形的面積坐標三角形的面積坐標用直角坐標表示為:i00111?????Ai
5、???PjPk??e3?xj?xyj?y0P22??x??xyy0kkAixy1xy11xyjk111?x?xy?y0?xy1?1xyjjjjjj222x??xyy0xy11xykkkkkk以上推導利用了行列式的線性變化性質(zhì)同理,三角形的面積用直角坐標表示為:1xyii1A?1xyjj21xykk6三角形的面積坐標i定義:三角形的面積坐標為L?A/;AL?A/;AL?A/AiijjkkP面積坐標的特點:Ai(1)三個角點的面積坐標分別為jki(1,0,0);j(0,1,0);k(0,0,1)(1)面積坐標不相互獨立:L?L?L?1
6、ijk7用面積坐標表示的形函數(shù)i三角形的面積坐標與直角坐標的關(guān)系:1xy1PL??A/1Axyiijj2A1xyAikkjk1???(xy?xy)(?y?yx)?(x?xy)??jkkjjkkj2A1與前述三角形形函數(shù)Nxyi?,???ai?bxcyi?i?(i?1,2,3)對比知2A三角形的面積坐標就是形函數(shù),即L??N(i1,2,3)ii8形函數(shù)的性質(zhì)及位移插值(1)?1ij?Nxyi?j,j???Ni=1Ni=1?0ij?iiN=1kkk3(2)?Nxyi?,1??N=1ji?1jj思考:物理意義是什么?????uxy?,?
7、?N120??N0???N30?d?????????1??????2??????3?????vxy?,??0N12??0N???0N3????1???N1000N2N3?????????2?0N0N0N??123??????3???ui位移:?dN??????e???i????v??i?B?10單元應變矩陣對位移函數(shù)1u?[(a?bx?cy)u?(a?bx?cy)u?(a?bx?cy)u]iiiijjjjmmmm2A1??[(a?bx?cy)??(a?bx?cy)??(a?bx?cy)?]iiiijjjjmmmm2A求導,可得到單
8、元內(nèi)任一點的應變和位移關(guān)系:???????00??????xx??????x????????u??e??????y???00???????N?????????yy???v?????xy??????????????y?x???y?x??B?11單元應