gaussian_processes_in_machine_learning

gaussian_processes_in_machine_learning

ID:5398903

大小:2.99 MB

頁(yè)數(shù):35頁(yè)

時(shí)間:2017-11-10

gaussian_processes_in_machine_learning_第1頁(yè)
gaussian_processes_in_machine_learning_第2頁(yè)
gaussian_processes_in_machine_learning_第3頁(yè)
gaussian_processes_in_machine_learning_第4頁(yè)
gaussian_processes_in_machine_learning_第5頁(yè)
資源描述:

《gaussian_processes_in_machine_learning》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。

1、GaussianProcessesinMachineLearningGerhardNeumann,SeminarF,WS05/06OutlineofthetalkGaussianProcesses(GP)[ma05,rs03]BayesianInferenceGPforregressionOptimizingthehyperparametersApplicationsGPLatentVariableModels[la04]GPDynamicalModels[wa05]GP:IntroductionG

2、aussianProcesses:Definition:AGPisacollectionofrandomvariables,anyfinitenumberofwhichhavejointGaussianDistributionDistributionoverfunctions:GaussianDistribution:overvectorsNonlinearRegression:XN…DataPointstN…TargetVectorInferNonlinearparameterizedfuncti

3、on,y(x;w),predictvaluestN+1fornewdatapointsxN+1E.g.FixedBasisFunctionsBayesianInferenceoftheparametersPosteriorpropabilityoftheparameters:Probabilitythattheobserveddatapointshavebeengeneratedbyy(x;w)OftenseparableGaussiandistributionisusedEachdatapoint

4、tidifferingfromy(xi;w)byadditivenoisepriorsontheweightsPredictionismadebymarginalizingovertheparametersIntegralishardtocalculateSampleparameterswfromthedistributionwithMarkovchainMonteCarlotechniquesOrApproximatewithaGaussianDistributionBayesianInferen

5、ce:SimpleExampleGP:isaGaussiandistributionExample:HFixedBasisfunctions,NinputpointsPrioronw:Calculatepriorfory(x):Priorforthetargetvaluesgeneratedfromy(x;w)+noise:CovarianceMatrix:CovarianceFunctionPredictingDataInfertN+1giventN:Simple,becausecondition

6、aldistributionisalsoaGaussianUseincrementalformofWecanrewritethisequationUsepartitionedinverseequationstogetfromPredictivemean:UsuallyusedfortheinterpolationUncertaintyintheresult:PredictingDataBayesianInference:SimpleExampleHowdoesthecovariancematrixl

7、ooklike?UsuallyN>>H:Qhasnotfullrank,butChas(duetotheadditionofI)SimpleExample:10RBFfunctions,uniformlydistributedovertheinputspaceBayesianInference:SimpleExampleAssumeuniformlyspacedbasisfunctions,SolutionoftheintegralLimitsofintegrationtoMoregeneralfo

8、rmGaussianProcessesOnlyCNneedstobeinverted(O(N3))PredictiondependentirelyonCandtheknowntargetstNGaussianProcesses:CovariancefunctionsMustgenerateanon-negativedefinitecovariancematrixforanysetofpointsHyperparametersofCSomeExamples:RBF:Li

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。
相關(guān)文章
更多
相關(guān)標(biāo)簽