>symsn>>s=symsum(1/n^(2^n),n,1,inf)s1=sum(1/((n^2)^n),n=1..Inf)(2)>>symsn>>">
數(shù)學(xué)實(shí)驗(yàn)(ATLAB版韓明版)2.5-3.4部分答案.doc

數(shù)學(xué)實(shí)驗(yàn)(ATLAB版韓明版)2.5-3.4部分答案.doc

ID:55529925

大?。?.31 MB

頁(yè)數(shù):29頁(yè)

時(shí)間:2020-05-16

數(shù)學(xué)實(shí)驗(yàn)(ATLAB版韓明版)2.5-3.4部分答案.doc_第1頁(yè)
數(shù)學(xué)實(shí)驗(yàn)(ATLAB版韓明版)2.5-3.4部分答案.doc_第2頁(yè)
數(shù)學(xué)實(shí)驗(yàn)(ATLAB版韓明版)2.5-3.4部分答案.doc_第3頁(yè)
數(shù)學(xué)實(shí)驗(yàn)(ATLAB版韓明版)2.5-3.4部分答案.doc_第4頁(yè)
數(shù)學(xué)實(shí)驗(yàn)(ATLAB版韓明版)2.5-3.4部分答案.doc_第5頁(yè)
資源描述:

《數(shù)學(xué)實(shí)驗(yàn)(ATLAB版韓明版)2.5-3.4部分答案.doc》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫(kù)。

1、練習(xí)2.51.判斷下列級(jí)數(shù)的斂散性,若收斂,求出其收斂值.,,,,,,.解:編程:(1)>>symsn>>s=symsum(1/n^(2^n),n,1,inf)s1=sum(1/((n^2)^n),n=1..Inf)(2)>>symsn>>s=symsum(sin(1/n),n,1,inf)s=sum(sin(1/n),n=1..Inf)(3)>>symsn>>s=symsum(log(n)/n^3,n,1,inf)s=-zeta(1,3)(4)>>symsn>>s=symsum(1/(log(n))^n,n,3,inf)s=su

2、m(1/(log(n)^n),n=3..Inf)(5)>>symsn>>s=symsum(1/(n*log(n)),n,2,inf)s=sum(1/n/log(n),n=2..Inf)(6)>>symsn>>s=symsum((-1)^n*n/(1+n^2),n,1,inf)s=-1/2*hypergeom([2,1+i,1-i],[2-i,2+i],-1)(7)顯然,上面級(jí)數(shù)(1)-(6)都收斂,分別等于:sum(1/(n^(2^n)),n=1..Inf)、sum(sin(1/n),n=1..Inf)、-zeta(1,3)、su

3、m(1/(log(n)^n),n=3..Inf)、sum(1/n/log(n),n=2..Inf)、symsum((-1)^n*n/(1+n^2),n,1,inf)。2.求當(dāng)k=4,5,6,7,8時(shí)公式中t的值。解:當(dāng)k=4時(shí),編程:>>symsn>>s=symsum(1/n^8,n,1,inf)s=1/9450*pi^8此時(shí),,,再次編程:>>symst>>solve('1/9450*pi^8=pi^8/t',t)ans=9450解得:t=9450;當(dāng)k=5時(shí),編程:>>symsn>>s=symsum(1/n^10,n,1,in

4、f)s=1/93555*pi^10此時(shí),,,再次編程:>>symst>>solve('1/93555*pi^10=pi^10/t',t)ans=93555解得:t=93555;當(dāng)k=6時(shí),利用上面步驟直接編程有:>>symsn>>s=symsum(1/n^12,n,1,inf)s=691/638512875*pi^12>>symst>>solve('691/638512875*pi^12=pi^12/t',t)ans=638512875/691解得:t=638512875/691;當(dāng)k=7時(shí),利用上面步驟直接編程有:>>symsn

5、>>s=symsum(1/n^14,n,1,inf)s=2/18243225*pi^14>>symst>>solve('2/18243225*pi^14=pi^14/t',t)ans=18243225/2解得:t=18243225/2;當(dāng)t=8時(shí),利用上面步驟直接編程有:>>symsn>>s=symsum(1/n^16,n,1,inf)s=3617/325641566250*pi^16>>symst>>solve('3617/325641566250*pi^16=pi^16/t',t)ans=325641566250/3617解得

6、:t=325641566250/3617.1.用Taylor命令觀測(cè)函數(shù)的Machlaurin展開式的前幾項(xiàng),然后在同一坐標(biāo)系里作出函數(shù)和它的Taylor展開式的前幾項(xiàng)構(gòu)成的多項(xiàng)式函數(shù)的圖形,觀測(cè)這些多項(xiàng)式函數(shù)的圖形的圖形逼近的情況.(1);(2);(3);(4);(5);(6).解:(1)編程:>>symsx>>f=asin(x);>>t1=taylor(f,1);t2=taylor(f,2);t3=taylor(f,3);t4=taylor(f,4);t5=taylor(f,5);t6=taylor(f,6);>>t1,t2,

7、t3,t4,t5,t6t1=0t2=xt3=xt4=x+1/6*x^3t5=x+1/6*x^3t6=x+1/6*x^3+3/40*x^5然后作圖觀察圖形逼近情況:>>x=-1:0.1:1;>>f=asin(x);t2=x;t4=x+1/6*x.^3;t6=x+1/6*x.^3+3/40*x.^5;>>plot(x,f,x,t2,'*',x,t4,'+',x,t6,'o')>>gridon圖像:通過(guò)圖像可知當(dāng):它們之間逼近程度最高。(2)編程:>>symsx>>f=atan(x);t1=taylor(f,1);t2=taylor(f

8、,2);t3=taylor(f,3);t4=taylor(f,4);t5=taylor(f,5);t6=taylor(f,6);>>t1,t2,t3,t4,t5,t6t1=0t2=xt3=xt4=x-1/3*x^3t5=x-1/3*x^3t6=x-

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。