資源描述:
《初中常見數(shù)學公式大全.doc》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在應用文檔-天天文庫。
1、初中常見數(shù)學公式大全這個工作可讓學生分組負責收集整理,登在小黑板上,每周一換。要求學生抽空抄錄并且閱讀成誦。其目的在于擴大學生的知識面,引導學生關注社會,熱愛生活,所以內(nèi)容要盡量廣泛一些,可以分為人生、價值、理想、學習、成長、責任、友誼、愛心、探索、環(huán)保等多方面。如此下去,除假期外,一年便可以積累40多則材料。如果學生的腦海里有了眾多的鮮活生動的材料,寫起文章來還用亂翻參考書嗎? 初中常見數(shù)學公式大全:“教書先生”恐怕是市井百姓最為熟悉的一種稱呼,從最初的門館、私塾到晚清的學堂,“教書先生”那一行當怎么說也算是讓國人景仰甚或敬畏的一種社
2、會職業(yè)。只是更早的“先生”概念并非源于教書,最初出現(xiàn)的“先生”一詞也并非有傳授知識那般的含義?!睹献印分械摹跋壬螢槌龃搜砸玻俊?;《論語》中的“有酒食,先生饌”;《國策》中的“先生坐,何至于此?”等等,均指“先生”為父兄或有學問、有德行的長輩。其實《國策》中本身就有“先生長者,有德之稱”的說法??梢姟跋壬敝夥钦嬲摹敖處煛敝猓故桥c當今“先生”的稱呼更接近。看來,“先生”之本源含義在于禮貌和尊稱,并非具學問者的專稱。稱“老師”為“先生”的記載,首見于《禮記?曲禮》,有“從于先生,不越禮而與人言”,其中之“先生”意為“年長、資深之傳
3、授知識者”,與教師、老師之意基本一致。1過兩點有且只有一條直線與當今“教師”一稱最接近的“老師”概念,最早也要追溯至宋元時期。金代元好問《示侄孫伯安》詩云:“伯安入小學,穎悟非凡貌,屬句有夙性,說字驚老師。”于是看,宋元時期小學教師被稱為“老師”有案可稽。清代稱主考官也為“老師”,而一般學堂里的先生則稱為“教師”或“教習”??梢?,“教師”一說是比較晚的事了。如今體會,“教師”的含義比之“老師”一說,具有資歷和學識程度上較低一些的差別。辛亥革命后,教師與其他官員一樣依法令任命,故又稱“教師”為“教員”。2兩點之間線段最短3同角或等角的補角相
4、等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯角相等,兩直線平行11同旁內(nèi)角互補,兩直線平行12兩直線平行,同位角相等13兩直線平行,內(nèi)錯角相等14兩直線平行,同旁內(nèi)角互補15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于18018推論1直角三角形的兩個銳角互余19推論2三角形
5、的一個外角等于和它不相鄰的兩個內(nèi)角的和20推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21全等三角形的對應邊、對應角相等22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等27定理1在角的平分線上的點到這個角的兩邊的距離相等28定理2到一個角的兩邊的距離相同的點,在
6、這個角的平分線上29角的平分線是到角的兩邊距離相等的所有點的集合30等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個角都等于6034等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等于60的等腰三角形是等邊三角形37在直角三角形中,如果一個銳角等于30那么它所對的直角邊等于
7、斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半39定理線段垂直平分線上的點和這條線段兩個端點的距離相等40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42定理1關于某條直線對稱的兩個圖形是全等形43定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線44定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上45逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱46勾股定理直角三角形兩
8、直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那么這個三角形是直角三角形48定理四邊形的內(nèi)角和等