資源描述:
《基于局部語義聚類的語義重疊社區(qū)發(fā)現(xiàn)算法-論文.pdf》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。
1、計算機(jī)研究與發(fā)展DOI:10.7544ssn1OOO一1239.2015.20140308JournalofComputerResearchandDevelopment52(7):I510—1521,2015基于局部語義聚類的語義重疊社區(qū)發(fā)現(xiàn)算法辛宇楊靜湯楚蘅葛斯喬(哈爾濱工程大學(xué)計算機(jī)科學(xué)與技術(shù)學(xué)院哈爾濱150001)(哈爾濱工業(yè)大學(xué)電氣工程及自動化學(xué)院哈爾濱150001)(xinyu@hrbeu.edu.cn)AnOverlappingSemanticCommunityDetectionAlgorithmBasedonLocalSemanticClusterXinYu,YangJing
2、,TangChuheng,andGeSiqiao(CollegeofComputerScienceandTechnology,HarbinEngineeringUniversity,Harbin150001)(SchoolofElectricalEngineeringandAutomation,HarbinInstituteofTechnology,Harbin150001)AbstractSincethesemanticsocialnetwork(SSN)iSanewkindofcomplexnetworks,thetraditionalcommunitydetectionalgorit
3、hmsdependingontheadjacencyinsocialnetworkarenotefficientintheSSN.Tosolvethisproblem,anoverlappingcommunitystructuredetectingmethodonsemanticsocialnetworksisproposedbasedonthelocalsemanticcluster(LSC).Firstly,thealgorithmutilizestheGibbssamplingmethodtoestablishthequantizationmappingbywhichtheseman
4、ticinformationinnodesiSchangedintothesemanticspace,withthelatentDirichletallocation(LDA)asthesemanticmode1;Secondly,thealgorithmestablishesthesimilaritymatrixofSSN,withtherelativeentropyofsemanticcoordinateasthemeasurementofsimilaritybetweennodes;Thirdly,accordingtothecharacteroflocalsmall—worldin
5、socialnetwork。thealgorithmproposestheS-fitnessmodelwhichisthelocalcommunitystructureofSSN,andestablishestheLSCmethodbytheS—fitnessmode1;Finally,thealgorithmproposesthesemanticmode1bywhichthecommunitystructureofSSNismeasured,andtheefficiencyandfeasibilityofthealgorithmandthesemanticmodularityarever
6、ifiedbyexperimentalanalysis.Keywordssemanticsocialnetwork(SSN);overlappingcommunitystructuredetection;latentDirichletallocation(LDA);relativeentropy;Gibbssampling;localsemanticcluster(LSC)摘要語義社會網(wǎng)絡(luò)是一種包含信息節(jié)點及社會關(guān)系構(gòu)成的新型復(fù)雜網(wǎng)絡(luò),因此以節(jié)點鄰接關(guān)系為挖掘?qū)ο蟮膫鹘y(tǒng)社會網(wǎng)絡(luò)社區(qū)發(fā)現(xiàn)算法無法有效處理語義社會網(wǎng)絡(luò)重疊社區(qū)發(fā)現(xiàn)問題.針對這一問題,提出基于局部語義聚類的語義社會網(wǎng)絡(luò)重疊社區(qū)發(fā)現(xiàn)
7、算法,該算法:1)以LDA(1atentDirichletallocation)模型為語義信息模型,利用Gibbs取樣法建立節(jié)點語義信息到語義空間的量化映射;2)以節(jié)點間語義坐標(biāo)的相對熵作為節(jié)點語義相似度的度量,建立節(jié)點相似度矩陣;3)根據(jù)社會網(wǎng)絡(luò)的局部小世界特性,提出語義社會網(wǎng)絡(luò)的局部社區(qū)結(jié)構(gòu)S—fitness模型,并根據(jù)S—fitness模型建立了局部語義聚類算法(1oca1semanticclusterm,LSC)