資源描述:
《端到端網(wǎng)絡(luò)流量的混合估計(jì)方法-論文.pdf》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫(kù)。
1、第43卷第7期光子學(xué)報(bào)Vo1.43No.72014年7月ACTAPHOToNICASINICAJuly2014doi:10.3788/gzxb20144307.0706023端到端網(wǎng)絡(luò)流量的混合估計(jì)方法蔣定德,趙祖耀,許宏偉,王興偉(東北大學(xué)信息科學(xué)與工程學(xué)院,沈陽(yáng)110819)摘要:利用主成分分析法獲取端到端網(wǎng)絡(luò)流量的主要特征分量并獲得其初始估計(jì)結(jié)果.為克服其初值敏感性將估計(jì)結(jié)果作為遺傳算法的初始值、鏈路流量估計(jì)偏差作為遺傳算法的適應(yīng)度函數(shù),通過構(gòu)建合適的交叉和變異概率函數(shù)來控制遺傳算法的交叉
2、和變異過程.采用合適的約束迭代函數(shù),利用遺傳算法通過迭代尋優(yōu)獲得端到端流量的估計(jì)結(jié)果,仿真結(jié)果表明所提出的方法是可行的.關(guān)鍵詞:端到端流量;流量估計(jì);主成分分析;迭代過程;流量建模中圖分類號(hào):TP393文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1004—4213(2014)07—0706023—6MixedEstimationApproachtoEnd-to—EndNetworkTrafficJIANGDing—de,ZHAOZu—yao,XUHong—wei,WANGXing—wei(College0,form
3、ationScienceandEngineering,NortheasternUniversity,Shenyang110819,China)Abstract:Principalcomponentanalysiswasexploitedtoextracttheprincipalfeaturesofend-to-endnetworktrafficandtoattaintheinitialestiamtionresults.Thisresultsaretakenasthepriorvalueofge
4、neticalgorithmtoovercomeitssensitivenesstothepriorvalue.Theestiamtionbiasesoflinktrafficisregardedasthefitnessfunctionofgeneticalgorithm.Thecrossoverandmutationprobabilityfunctionsarebuilttocontro1itscorossoverandmutationprocesses.Theappropriateitera
5、tivefuntionwithcontraintsisbuilt.Thegeneticalgorithmisusedtoattaintheend-to—endtrafficestimationresultsintheiterativeway.Simulationresultsshowthattheproposedmethodisfeasible.Keywords:End—to—endtraffic;Trafficestimation;Principalcomponentanalysis;Iter
6、ativeprocess;TrafficmodelingoCISCodes:060.4256;060.4251;060.4258;060.1155networkmanagementandtrafficengineering.Dueto0Introductionthedifficultyindirectlyattainingthem,end-to-endwiththerapiddevelopmentofinformationtrafficestimationhasreceivedmoreatten
7、tionfromtechnologies,communicationnetworksarebecomingresearchersandoperatorsaroundtheworldE.moreandmorecomplexandtheirscalesareTheestimationmethodsinRefs.F7—9]isbasedonincreasingl_l_2].Thenetworktrafficpresentsallkindsofstatistica1theoriestobeputforw
8、ard.Theyusedthenewfeatures。suchasspatio—temporalcorrelationstatisticalmodelstosetupnetworks"source-destinationfeatures,self-similaritynature,heavy-tailednodeflowmodelandexploitedthestatisticaltheorytodistributionandsoon[].End_to—endtrafficshowstheest