資源描述:
《統(tǒng)計(jì)學(xué)簡(jiǎn)答重點(diǎn)分析.doc》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。
1、1、試描述均值、中位數(shù)、眾數(shù)的特點(diǎn)及應(yīng)用場(chǎng)合。?答:均值的計(jì)算是建立在每個(gè)觀測(cè)值之上的,因此均值受極端值的影響很大。在這種時(shí)候,均值歪曲了數(shù)據(jù)實(shí)際傳遞的信息,因此,當(dāng)數(shù)據(jù)集有極端值時(shí),均值并不是集中趨勢(shì)的最好的描述。眾數(shù)、中位數(shù)和均值各自具有不同的特點(diǎn),在實(shí)際應(yīng)用中,應(yīng)選擇合理的測(cè)度值來(lái)描述數(shù)據(jù)的集中趨勢(shì)。?當(dāng)數(shù)據(jù)呈對(duì)稱分布或接近對(duì)稱分布時(shí),三個(gè)代表值相等或接近相等,選擇用均值比較好,因?yàn)榫蛋巳繑?shù)據(jù)的信息,易被大多數(shù)人所理解和接受;當(dāng)數(shù)據(jù)為偏態(tài)分布是,特別是當(dāng)偏斜的程度較大時(shí),應(yīng)選擇眾數(shù)或中位數(shù);當(dāng)數(shù)據(jù)為定類尺度時(shí),如商品(服裝、鞋類)等的規(guī)格,用眾數(shù)是
2、較好的選擇。2、為什么要計(jì)算離散系數(shù)?答:離散系數(shù)是用來(lái)對(duì)兩組數(shù)據(jù)的差異程度進(jìn)行相對(duì)比較的。因?yàn)樵诒容^相關(guān)的兩組數(shù)據(jù)的差異程度時(shí),方差和標(biāo)準(zhǔn)差是以均值為中心計(jì)算出來(lái)的,因而有時(shí)直接比較方差是不準(zhǔn)確的,需要提出均值大小不等的影響,計(jì)算并比較離散系數(shù)。離散系數(shù)是從相對(duì)的角度觀察差異和離散程度的,在比較相關(guān)事物的差異程度時(shí),較之直接比較標(biāo)準(zhǔn)差要好些3、方差分析的基本原理是什么?答:方差分析的主要思想是將影響指標(biāo)值的一個(gè)或幾個(gè)因素取不同的水平,然后建立相應(yīng)的方差分析模型,由此給出檢驗(yàn)因素的不同水平對(duì)指標(biāo)值是否有顯著影響的統(tǒng)計(jì)分析過(guò)程。4、簡(jiǎn)述回歸方程的顯著性檢驗(yàn)與回歸系
3、數(shù)的顯著性檢驗(yàn)的區(qū)別和聯(lián)系答:回歸系數(shù)的顯著性檢驗(yàn)是對(duì)回歸系數(shù)進(jìn)行是否等于0或等于某個(gè)常數(shù)的假設(shè)檢驗(yàn);而回歸方程的顯著性檢驗(yàn)是指方程是否顯著存在假設(shè)檢驗(yàn);在一元線性回歸中,回歸系數(shù)的顯著性檢驗(yàn)和回歸方程的顯著性檢驗(yàn)是等價(jià)的,而在多元線性回歸中兩者不同。5、誤差主要包括哪兩類?引起誤差的原因分別是什么??答:主要包括抽樣誤差和非抽樣誤差?抽樣誤差:是指由樣本數(shù)據(jù)對(duì)總體特征進(jìn)行估計(jì)時(shí)所引起的代表性誤差,原因是由于每次抽取一個(gè)樣本,而樣本中包含的哪些單元是隨機(jī)的,不同的樣本由于包含的單元不同,得到的估計(jì)值自然不同,各個(gè)估計(jì)值與總體特征之間不可避免的出現(xiàn)差距,由此產(chǎn)生了
4、抽樣誤差。?非抽樣誤差:其來(lái)源比較復(fù)雜,主要有抽樣框未能不重不漏包含所有抽樣單元導(dǎo)致的抽樣框誤差,調(diào)查測(cè)量不準(zhǔn)確引致的測(cè)量誤差,還有無(wú)回答誤差和粗大誤差。?6、什么是抽樣平均誤差?抽樣平均誤差、方差和偏差的關(guān)系怎樣?答:抽樣平均誤差是反映抽樣誤差一般水平的指標(biāo),它的實(shí)質(zhì)含義是指抽樣平均數(shù)(或成數(shù))的標(biāo)準(zhǔn)差。即它反映了抽樣指標(biāo)與總體指標(biāo)的平均離差程度。關(guān)系:抽樣平均誤差的平方等于標(biāo)準(zhǔn)差平方和偏差平方之和7、影響樣本容量的因素主要包括:?答:(1)總體各單位標(biāo)志變異程度;??(2)允許誤差的大??;?(3)概率度的大?。唬?)抽樣方法不同;(5)抽樣方式不同。?8、什
5、么是方差分析,它所研究的是什么?答:方差分析是檢驗(yàn)多個(gè)總體均值是否相等的統(tǒng)計(jì)方法。它是通過(guò)檢驗(yàn)各總體的均值是否相等來(lái)判斷分類型自變量對(duì)數(shù)值型因變量是否有顯著影響。表面上看,方差分析是檢驗(yàn)多個(gè)總體均值是否相同,但本質(zhì)上它所研究的是分類型自變量對(duì)數(shù)值型自變量的影響,例如,它們之間有沒(méi)有關(guān)系,關(guān)系密切程度如何,等等。9、方差分析中有哪些基本假設(shè)?答:方差分析中有三個(gè)基本假設(shè):1、每個(gè)總體都服從正態(tài)分布,也就是說(shuō),對(duì)于因素的每一個(gè)水平,其觀測(cè)值是來(lái)自正態(tài)分布總體的簡(jiǎn)答隨機(jī)樣本;各個(gè)總體的方差必須相同,也就是說(shuō),對(duì)于各組觀測(cè)值,是從具有相同方差的正態(tài)總體中抽取的;觀測(cè)值是
6、獨(dú)立的10、一組數(shù)據(jù)的分布特征可以從哪幾個(gè)方面進(jìn)行測(cè)度?答:一組數(shù)據(jù)的分布特征可以從三個(gè)方面進(jìn)行:集中趨勢(shì),離散程度,偏態(tài)與峰度。數(shù)據(jù)的集中趨勢(shì)是指一種數(shù)據(jù)項(xiàng)某一中心靠攏的傾向,它反映了一組數(shù)據(jù)中心點(diǎn)的位置所在;數(shù)據(jù)的離散程度反映的是各變量值遠(yuǎn)離其中心的程度;數(shù)據(jù)的偏態(tài)和峰態(tài)是測(cè)度數(shù)據(jù)分布形狀的兩個(gè)重要指標(biāo)11、如何理解置信區(qū)間的置信水平1-α?答:置信水平是置信區(qū)間可靠程度的度量。置信水平為1-α的含義是:對(duì)某個(gè)參數(shù)φ去m個(gè)容量為n的樣本,用同樣方法可以獲得m個(gè)置信區(qū)間,這些置信區(qū)間中至少有m(1-a)個(gè)包含了參數(shù)φ11、對(duì)于比率數(shù)據(jù)的平均,為什么采取幾何平均
7、?答:由于現(xiàn)象發(fā)展的總比率并不等于各期比率之和,而等于各期比率的連乘機(jī),所以各期比率平均數(shù),不能講比率代數(shù)和后按算術(shù)平均法計(jì)算,而只能在比率連乘機(jī)基礎(chǔ)上按幾何平均法計(jì)算。12、數(shù)據(jù)的計(jì)量尺度有哪些?答:數(shù)據(jù)的計(jì)量尺度有四種:1、定類尺度:也稱類別尺度或列名尺度,它是把事物按照屬性或類別分組。2、定序尺度:也叫順序尺度,它是對(duì)事物之間等級(jí)差別或順序差別的測(cè)度,具有定類尺度的所有性能。3、定距尺度:也叫間隔尺度,是對(duì)事物間的類別或次序間的間隔的測(cè)度,其計(jì)量結(jié)果變現(xiàn)為數(shù)值。4、定比尺度:也叫比率尺度,它與定距尺度屬于同一層次,其計(jì)量結(jié)果也表現(xiàn)為數(shù)值。13、簡(jiǎn)述方差分析
8、的基本步驟答:求平方和;