最新24 BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法課件ppt.ppt

最新24 BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法課件ppt.ppt

ID:62058808

大?。?71.50 KB

頁數(shù):48頁

時間:2021-04-13

最新24 BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法課件ppt.ppt_第1頁
最新24 BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法課件ppt.ppt_第2頁
最新24 BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法課件ppt.ppt_第3頁
最新24 BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法課件ppt.ppt_第4頁
最新24 BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法課件ppt.ppt_第5頁
資源描述:

《最新24 BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法課件ppt.ppt》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。

1、24BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法概述Rumelhart,McClelland于1985年提出了BP網(wǎng)絡(luò)的誤差反向后傳BP(BackPropagation)學(xué)習(xí)算法BP算法基本原理利用輸出后的誤差來估計輸出層的直接前導(dǎo)層的誤差,再用這個誤差估計更前一層的誤差,如此一層一層的反傳下去,就獲得了所有其他各層的誤差估計。J.McClellandDavidRumelhart2.4.1BP神經(jīng)網(wǎng)絡(luò)模型三層BP網(wǎng)絡(luò)2.4.2BP網(wǎng)絡(luò)的標(biāo)準(zhǔn)學(xué)習(xí)算法-算法思想學(xué)習(xí)的類型:有導(dǎo)師學(xué)習(xí)核心思想:將輸出誤差以某種形式通過隱層向輸入層逐層反傳學(xué)習(xí)的過程:信號的正向傳播誤差的反向

2、傳播將誤差分?jǐn)偨o各層的所有單元---各層單元的誤差信號修正各單元權(quán)值2.4.2BP網(wǎng)絡(luò)的標(biāo)準(zhǔn)學(xué)習(xí)算法-學(xué)習(xí)過程正向傳播:輸入樣本---輸入層---各隱層---輸出層判斷是否轉(zhuǎn)入反向傳播階段:若輸出層的實(shí)際輸出與期望的輸出(教師信號)不符誤差反傳誤差以某種形式在各層表示----修正各層單元的權(quán)值網(wǎng)絡(luò)輸出的誤差減少到可接受的程度進(jìn)行到預(yù)先設(shè)定的學(xué)習(xí)次數(shù)為止2.4.2BP網(wǎng)絡(luò)的標(biāo)準(zhǔn)學(xué)習(xí)算法網(wǎng)絡(luò)結(jié)構(gòu)輸入層有n個神經(jīng)元,隱含層有p個神經(jīng)元,輸出層有q個神經(jīng)元變量定義輸入向量;隱含層輸入向量;隱含層輸出向量;輸出層輸入向量;輸出層輸出向量;期望輸出向量;2.4.

3、2BP網(wǎng)絡(luò)的標(biāo)準(zhǔn)學(xué)習(xí)算法輸入層與中間層的連接權(quán)值:隱含層與輸出層的連接權(quán)值:隱含層各神經(jīng)元的閾值:輸出層各神經(jīng)元的閾值:樣本數(shù)據(jù)個數(shù):激活函數(shù):誤差函數(shù):2.4.2BP網(wǎng)絡(luò)的標(biāo)準(zhǔn)學(xué)習(xí)算法第一步,網(wǎng)絡(luò)初始化給各連接權(quán)值分別賦一個區(qū)間(-1,1)內(nèi)的隨機(jī)數(shù),設(shè)定誤差函數(shù)e,給定計算精度值和最大學(xué)習(xí)次數(shù)M。第二步,隨機(jī)選取第個輸入樣本及對應(yīng)期望輸出2.4.2BP網(wǎng)絡(luò)的標(biāo)準(zhǔn)學(xué)習(xí)算法第三步,計算隱含層各神經(jīng)元的輸入和輸出2.4.2BP網(wǎng)絡(luò)的標(biāo)準(zhǔn)學(xué)習(xí)算法第四步,利用網(wǎng)絡(luò)期望輸出和實(shí)際輸出,計算誤差函數(shù)對輸出層的各神經(jīng)元的偏導(dǎo)數(shù)。2.4.2BP網(wǎng)絡(luò)的標(biāo)準(zhǔn)學(xué)習(xí)算法第

4、五步,利用隱含層到輸出層的連接權(quán)值、輸出層的和隱含層的輸出計算誤差函數(shù)對隱含層各神經(jīng)元的偏導(dǎo)數(shù)。2.4.2BP網(wǎng)絡(luò)的標(biāo)準(zhǔn)學(xué)習(xí)算法2.4.2BP網(wǎng)絡(luò)的標(biāo)準(zhǔn)學(xué)習(xí)算法第六步,利用輸出層各神經(jīng)元的和隱含層各神經(jīng)元的輸出來修正連接權(quán)值。2.4.2BP網(wǎng)絡(luò)的標(biāo)準(zhǔn)學(xué)習(xí)算法第七步,利用隱含層各神經(jīng)元的和輸入層各神經(jīng)元的輸入修正連接權(quán)。2.4.2BP網(wǎng)絡(luò)的標(biāo)準(zhǔn)學(xué)習(xí)算法第八步,計算全局誤差第九步,判斷網(wǎng)絡(luò)誤差是否滿足要求。當(dāng)誤差達(dá)到預(yù)設(shè)精度或?qū)W習(xí)次數(shù)大于設(shè)定的最大次數(shù),則結(jié)束算法。否則,選取下一個學(xué)習(xí)樣本及對應(yīng)的期望輸出,返回到第三步,進(jìn)入下一輪學(xué)習(xí)。2.4.2BP網(wǎng)絡(luò)

5、的標(biāo)準(zhǔn)學(xué)習(xí)算法BP算法直觀解釋情況一直觀表達(dá)當(dāng)誤差對權(quán)值的偏導(dǎo)數(shù)大于零時,權(quán)值調(diào)整量為負(fù),實(shí)際輸出大于期望輸出,權(quán)值向減少方向調(diào)整,使得實(shí)際輸出與期望輸出的差減少。whoe>0,此時Δwho<02.4.2BP網(wǎng)絡(luò)的標(biāo)準(zhǔn)學(xué)習(xí)算法BP算法直解釋情況二直觀表達(dá)當(dāng)誤差對權(quán)值的偏導(dǎo)數(shù)小于零時,權(quán)值調(diào)整量為正,實(shí)際輸出少于期望輸出,權(quán)值向增大方向調(diào)整,使得實(shí)際輸出與期望輸出的差減少。e<0,此時Δwho>0who2.4.3BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法的MATLAB實(shí)現(xiàn)MATLAB中BP神經(jīng)網(wǎng)絡(luò)的重要函數(shù)和基本功能函數(shù)名功能newff()生成一個前饋BP網(wǎng)絡(luò)tansig(

6、)雙曲正切S型(Tan-Sigmoid)傳輸函數(shù)logsig()對數(shù)S型(Log-Sigmoid)傳輸函數(shù)traingd()梯度下降BP訓(xùn)練函數(shù)2.4.3BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法的MATLAB實(shí)現(xiàn)MATLAB中BP神經(jīng)網(wǎng)絡(luò)的重要函數(shù)和基本功能newff()功能建立一個前向BP網(wǎng)絡(luò)格式net=newff(PR,[S1S2...SN1],{TF1TF2...TFN1},BTF,BLF,PF)說明net為創(chuàng)建的新BP神經(jīng)網(wǎng)絡(luò);PR為網(wǎng)絡(luò)輸入取向量取值范圍的矩陣;[S1S2…SNl]表示網(wǎng)絡(luò)隱含層和輸出層神經(jīng)元的個數(shù);{TFlTF2…TFN1}表示網(wǎng)絡(luò)隱含層和輸

7、出層的傳輸函數(shù),默認(rèn)為‘tansig’;BTF表示網(wǎng)絡(luò)的訓(xùn)練函數(shù),默認(rèn)為‘trainlm’;BLF表示網(wǎng)絡(luò)的權(quán)值學(xué)習(xí)函數(shù),默認(rèn)為‘learngdm’;PF表示性能數(shù),默認(rèn)為‘mse’。2.4.3BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法的MATLAB實(shí)現(xiàn)MATLAB中BP神經(jīng)網(wǎng)絡(luò)的重要函數(shù)和基本功能tansig()功能正切sigmoid激活函數(shù)格式a=tansig(n)說明雙曲正切Sigmoid函數(shù)把神經(jīng)元的輸入范圍從(-∞,+∞)映射到(-1,1)。它是可導(dǎo)函數(shù),適用于BP訓(xùn)練的神經(jīng)元。logsig()功能對數(shù)Sigmoid激活函數(shù)格式a=logsig(N)說明對數(shù)Si

8、gmoid函數(shù)把神經(jīng)元的輸入范圍從(-∞,+∞)映射到(0,1)。它是可導(dǎo)函數(shù),適用于BP訓(xùn)練的神經(jīng)元。2.

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。