資源描述:
《希爾伯特23項(xiàng)問(wèn)題》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、編輯詞條希爾伯特問(wèn)題 在1900年8月巴黎國(guó)際數(shù)學(xué)家代表大會(huì)上,希爾伯特發(fā)表了題為《數(shù)學(xué)問(wèn)題》的著名講演。他根據(jù)過(guò)去特別是十九世紀(jì)數(shù)學(xué)研究的成果和發(fā)展趨勢(shì),提出了23個(gè)最重要的數(shù)學(xué)問(wèn)題。這23個(gè)問(wèn)題通稱(chēng)希爾伯特問(wèn)題,后來(lái)成為許多數(shù)學(xué)家力圖攻克的難關(guān),對(duì)現(xiàn)代數(shù)學(xué)的研究和發(fā)展產(chǎn)生了深刻的影響,并起了積極的推動(dòng)作用,希爾伯特問(wèn)題中有些現(xiàn)已得到圓滿解決,有些至今仍未解決。他在講演中所闡發(fā)的想信每個(gè)數(shù)學(xué)問(wèn)題都可以解決的信念,對(duì)于數(shù)學(xué)工作者是一種巨大的鼓舞?! ∠柌氐?3個(gè)問(wèn)題分屬四大塊:第1到第6問(wèn)題是數(shù)學(xué)基礎(chǔ)問(wèn)題;第7到第12問(wèn)題是數(shù)論問(wèn)題;第13到第18問(wèn)題屬于代數(shù)
2、和幾何問(wèn)題;第19到第23問(wèn)題屬于數(shù)學(xué)分析?! 。?)康托的連續(xù)統(tǒng)基數(shù)問(wèn)題。 1874年,康托猜測(cè)在可數(shù)集基數(shù)和實(shí)數(shù)集基數(shù)之間沒(méi)有別的基數(shù),即著名的連續(xù)統(tǒng)假設(shè)。1938年,僑居美國(guó)的奧地利數(shù)理邏輯學(xué)家哥德?tīng)栕C明連續(xù)統(tǒng)假設(shè)與ZF集合論公理系統(tǒng)的無(wú)矛盾性。1963年,美國(guó)數(shù)學(xué)家科恩(P.Choen)證明連續(xù)統(tǒng)假設(shè)與ZF公理彼此獨(dú)立。因而,連續(xù)統(tǒng)假設(shè)不能用ZF公理加以證明。在這個(gè)意義下,問(wèn)題已獲解決?! 。?)算術(shù)公理系統(tǒng)的無(wú)矛盾性。 歐氏幾何的無(wú)矛盾性可以歸結(jié)為算術(shù)公理的無(wú)矛盾性。希爾伯特曾提出用形式主義計(jì)劃的證明論方法加以證明,哥德?tīng)?931年發(fā)表不完備性定理作出
3、否定。根茨(G.Gentaen,1909-1945)1936年使用超限歸納法證明了算術(shù)公理系統(tǒng)的無(wú)矛盾性?! 。?)只根據(jù)合同公理證明等底等高的兩個(gè)四面體有相等之體積是不可能的。 問(wèn)題的意思是:存在兩個(gè)等高等底的四面體,它們不可能分解為有限個(gè)小四面體,使這兩組四面體彼此全等德思(M.Dehn)1900年已解決。 (4)兩點(diǎn)間以直線為距離最短線問(wèn)題?! 〈藛?wèn)題提的一般。滿足此性質(zhì)的幾何很多,因而需要加以某些限制條件。1973年,蘇聯(lián)數(shù)學(xué)家波格列洛夫(Pogleov)宣布,在對(duì)稱(chēng)距離情況下,問(wèn)題獲解決?! 。?)拓?fù)鋵W(xué)成為李群的條件(拓?fù)淙海??! ∵@一個(gè)問(wèn)題簡(jiǎn)稱(chēng)連續(xù)
4、群的解析性,即是否每一個(gè)局部歐氏群都一定是李群。1952年,由格里森(Gleason)、蒙哥馬利(Montgomery)、齊賓(Zippin)共同解決。1953年,日本的山邁英彥已得到完全肯定的結(jié)果?! 。?)對(duì)數(shù)學(xué)起重要作用的物理學(xué)的公理化?! ?933年,蘇聯(lián)數(shù)學(xué)家柯?tīng)柲缏宸驅(qū)⒏怕收摴砘:髞?lái),在量子力學(xué)、量子場(chǎng)論方面取得成功。但對(duì)物理學(xué)各個(gè)分支能否全盤(pán)公理化,很多人有懷疑?! 。?)某些數(shù)的超越性的證明?! ⌒枳C:如果α是代數(shù)數(shù),β是無(wú)理數(shù)的代數(shù)數(shù),那么αβ一定是超越數(shù)或至少是無(wú)理數(shù)(例如,2√2和eπ)。蘇聯(lián)的蓋爾封特(Gelfond)1929年、德國(guó)的
5、施奈德(Schneider)及西格爾(Siegel)1935年分別獨(dú)立地證明了其正確性。但超越數(shù)理論還遠(yuǎn)未完成。目前,確定所給的數(shù)是否超越數(shù),尚無(wú)統(tǒng)一的方法?! 。?)素?cái)?shù)分布問(wèn)題,尤其對(duì)黎曼猜想、哥德巴赫猜想和孿生素共問(wèn)題。 素?cái)?shù)是一個(gè)很古老的研究領(lǐng)域。希爾伯特在此提到黎曼(Riemann)猜想、哥德巴赫(Goldbach)猜想以及孿生素?cái)?shù)問(wèn)題。黎曼猜想至今未解決。哥德巴赫猜想和孿生素?cái)?shù)問(wèn)題目前也未最終解決,其最佳結(jié)果均屬中國(guó)數(shù)學(xué)家陳景潤(rùn)?! 。?)一般互反律在任意數(shù)域中的證明?! ?921年由日本的高木貞治,1927年由德國(guó)的阿廷(E.Artin)各自給以基本
6、解決。而類(lèi)域理論至今還在發(fā)展之中?! 。?0)能否通過(guò)有限步驟來(lái)判定不定方程是否存在有理整數(shù)解? 求出一個(gè)整數(shù)系數(shù)方程的整數(shù)根,稱(chēng)為丟番圖(約210-290,古希臘數(shù)學(xué)家)方程可解。1950年前后,美國(guó)數(shù)學(xué)家戴維斯(Davis)、普特南(Putnan)、羅賓遜(Robinson)等取得關(guān)鍵性突破。1970年,巴克爾(Baker)、費(fèi)羅斯(Philos)對(duì)含兩個(gè)未知數(shù)的方程取得肯定結(jié)論。1970年。蘇聯(lián)數(shù)學(xué)家馬蒂塞維奇最終證明:在一般情況答案是否定的。盡管得出了否定的結(jié)果,卻產(chǎn)生了一系列很有價(jià)值的副產(chǎn)品,其中不少和計(jì)算機(jī)科學(xué)有密切聯(lián)系。 ?。?1)一般代數(shù)數(shù)域內(nèi)的二
7、次型論。 德國(guó)數(shù)學(xué)家哈塞(Hasse)和西格爾(Siegel)在20年代獲重要結(jié)果。60年代,法國(guó)數(shù)學(xué)家魏依(A.Weil)取得了新進(jìn)展?! 。?2)類(lèi)域的構(gòu)成問(wèn)題?! 〖磳⒇悹栍蛏系目肆_內(nèi)克定理推廣到任意的代數(shù)有理域上去。此問(wèn)題僅有一些零星結(jié)果,離徹底解決還很遠(yuǎn)?! 。?3)一般七次代數(shù)方程以二變量連續(xù)函數(shù)之組合求解的不可能性。 七次方程x7+ax3+bx2+cx+1=0的根依賴(lài)于3個(gè)參數(shù)a、b、c;x=x(a,b,c)。這一函數(shù)能否用兩變量函數(shù)表示出來(lái)?此問(wèn)題已接近解決。1957年,蘇聯(lián)數(shù)學(xué)家阿諾爾德(Arnold)證明了任一在〔0,1〕上連續(xù)的實(shí)函數(shù)