資源描述:
《linear mappings between normed linear spaces》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。
1、CHAPTER15LinearMappingsBetweenNormedLinearSpacesLetXandYbeapairoffinite-dimensionalnonmedlinearspacesoverthereals;weshalldenotethenorminbothspacesbyII,althoughtheyhavenothingtodowitheachother.Thefirstlemmashowsthateverylinearmapofonenonmedlinearspaceintoanotherisbounded.Lemma1.ForanylinearmapT:X-+Y,
2、thereisaconstantcsuchthatforallxinX,ITxiaixj;(2)thenTx=>ajTxj.BypropertiesofthenorminY,ITxllaillTxllFromthiswededucethatITxi3、PPLICATIONSwhereIxlx=maxlail,k=ITxil.WehavenotedinChapter14thatIIxisanorm.SincewehaveshowninChapter14,Theorem2,thatallnormsareequivalent,IxI,4、lideanspaceintoanother.Analogously,wehavethefollowingdefinition.Definition.ThenormofthelinearmapT:X-->Y,denotedasITI,isITxIITI=sup.(4)a-#0IxIRemark1.Itfollowsfrom(1)thatITIisfinite.Remark2.ItiseasytoseethatITIisthesmallestvaluewecanchooseforcininequality(1).Becauseofthehomogeneityofnorms,definition(
5、4)canbephrasedasfollows:(4)'ITI=supITxI.jxl=1Theorem2.ITIasdefinedin(4)and(4)'isanorminthelinearspaceofalllinearmappingsofXintoY.Proof.SupposeTisnonzero;thatmeansthatforsomevectorxoy60,Tx000.Thenby(4),IT*ITI>IxolsincethenormsinXandYarepositive,thepositivityofITIfollows.LINEARMAPPINGSBETWEENNORMEDLIN
6、EARSPACES231Toprovesubadditivitywenote,using(4)',thatwhenSandTaretwomappingsofX-rY,thenIT+SI=supI(T+S)xI7、eityisobvious;thiscompletestheproofofTheorem2.GivenanymappingTfromonelinearspaceXintoanotherY,weexplainedinChapter3thatthereisanothermap,calledthetransposeofTanddenotedasT,mappingY,thedualofY,intoX',t