robust estimation of style analysis coefficients

robust estimation of style analysis coefficients

ID:7291041

大?。?79.61 KB

頁數(shù):10頁

時(shí)間:2018-02-10

robust estimation of style analysis coefficients_第1頁
robust estimation of style analysis coefficients_第2頁
robust estimation of style analysis coefficients_第3頁
robust estimation of style analysis coefficients_第4頁
robust estimation of style analysis coefficients_第5頁
資源描述:

《robust estimation of style analysis coefficients》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。

1、Robustestimationofstyleanalysiscoef?cientsMicheleLaRoccaandDomenicoVistoccoAbstract.Styleanalysis,asoriginallyproposedbySharpe,isanassetclassfactormodelaimedatobtaininginformationontheinternalallocationofa?nancialportfolioandatcomparingportfolioswithsimilarinvestmentst

2、rategies.Theclassicalapproachisbasedonaconstrainedlinearregressionmodelandthecoef?cientsareusuallyestimatedexploitingaleastsquaresprocedure.Thissolutionclearlysuffersfromthepresenceofoutlyingobservations.Theaimofthepaperistoinvestigatetheuseofarobustestimatorforstyleco

3、ef?cientsbasedonconstrainedquantileregression.TheperformanceofthenovelprocedureisevaluatedbymeansofaMonteCarlostudywheredifferentsetsofoutliers(bothintheconstituentreturnsandintheportfolioreturns)havebeenconsidered.Keywords:styleanalysis,quantileregression,subsampling1

4、IntroductionStyleanalysis,aswidelydescribedbyHorstetal.[12],isapopularandimportanttoolinportfoliomanagement.Firstly,itcanbeusedtoestimatetherelevantfactorexposureofa?nancialportfolio.Secondly,itcanbeavaluabletoolinperformancemeasurementsincethestyleportfoliocanbeusedas

5、abenchmarkinevaluatingtheportfolioperformance.Finally,itcanbeusedtogainhighlyaccuratefutureportfo-lioreturnpredictionssinceitiswellknownfromempiricalstudies[12]thatfactorexposuresseemtobemorerelevantthanactualportfolioholdings.Themethod,originallyproposedbySharpe[25],i

6、sareturn-basedanalysisaimedatdecomposingportfolioperformancewithrespecttothecontributionofdifferentconstituentscomposingtheportfolio.Eachsectorisrepresentedbyanindexwhosereturnsareavailable.Themodelregressesportfolioreturnsonconstituentreturnsinordertodecomposetheportf

7、olioperformancewithrespecttoeachconstituent.Indeed,intheframeworkofclassicalregression,theestimatedcoef?cientsmeanthesensitivityofportfolioexpectedreturnstoconstituentreturns.Theclassicalapproachisbasedonalinearregressionmodel,estimatedbyusingleastsquares,butdifferentc

8、onstraintscanbeimposedonthecoef?cients.M.Corazzaetal.(eds.),MathematicalandStatisticalMethodsforActuarialSciencesandF

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。