vector autoregressive moving-average time series

vector autoregressive moving-average time series

ID:7304952

大?。?31.66 KB

頁(yè)數(shù):94頁(yè)

時(shí)間:2018-02-11

vector autoregressive moving-average time series_第1頁(yè)
vector autoregressive moving-average time series_第2頁(yè)
vector autoregressive moving-average time series_第3頁(yè)
vector autoregressive moving-average time series_第4頁(yè)
vector autoregressive moving-average time series_第5頁(yè)
資源描述:

《vector autoregressive moving-average time series》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫(kù)

1、Tsay-Driver-12013/10/2812:29page105#1CHAPTER3VectorAutoregressiveMoving-AverageTimeSeriesForparsimoniousparameterizationandfurthersimpli?cationinmodelingmulti-variatetimeseries,weconsiderinthischapterthevectormoving-average(VMA)modelsandthevectorautoregressivemoving-av

2、erage(VARMA)models.SeeEqua-tion(1.21).Westudypropertiesofthemodelsanddiscusstheirimplications.WealsoaddresssomenewchallengesfacingtheVARMAmodelsthatdonotoccurinstudyingVARmodelsofChapter2.SimilartothecaseofVARmodels,westartwithsimplemodelsandprovidejusti?cationsforusingthe

3、models.Wethenpro-videresultsforthegeneralstationaryandinvertibleVARMA(p,q)models.Someofthegeneralizationsareobtainedbyexpandingthedimensionoftheunderlyingtimeseriesinordertoreducetheorderofamodel.SpecialattentionispaidtotheexactlikelihoodfunctionofaVARMAmodelandthecalculat

4、ionofthelikelihoodfunction.WealsostudylineartransformationandtemporalaggregationofaVARMAmodel.Realexamplesandsomesimulationsareusedtodemonstratetheapplica-tionsandtoemphasizethemainpointsoftheVARMAmodel.Finally,weanalyzesomerealtimeseriesviatheVARMAmodels.Heavymatrixnotati

5、onisusedinSections3.9and3.10todescribethelikelihoodfunctionofaVARMAtimeseries.ForreaderswhofocusonapplicationsofVARMAmodels,thesetwosectionscanbeskippedonthe?rstread.MultivariateTimeSeriesAnalysis:WithRandFinancialApplications,FirstEdition.RueyS.Tsay.c2014JohnWiley&Sons,I

6、nc.Published2014byJohnWiley&Sons,Inc.105Tsay-Driver-12013/10/2812:29page106#2106vectorautoregressivemoving-averagetimeseries3.1VECTORMAMODELSAk-dimensionaltimeseriesztfollowsaVMAmodeloforderqifqzt=μ+at?θiat?i,(3.1)i=1whereμisaconstantvectordenotingthemeanofzt,θiar

7、ek×kmatriceswithθq=0,and{at}isawhitenoiseseriesde?nedinEquation(2.1)withVar(at)=Σa=[σa,ij],whichispositivede?nite.Usingtheback-shiftoperatorthemodelbecomesz=μ+θ(B)a,whereθ(B)=I?qθBiisamatrixpolynomialttki=1iofdegreeq.VMAmodelsexistformanyreasons.In?nance,itiswellknowntha

8、tthebidandaskbouncecanintroducenegativelag-1serialcorrelationinhigh-frequencyreturns,fore

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。