重慶市渝北中學(xué)2024屆高三上學(xué)期9月月考數(shù)學(xué)題 Word版含解析.docx

重慶市渝北中學(xué)2024屆高三上學(xué)期9月月考數(shù)學(xué)題 Word版含解析.docx

ID:83605728

大?。?.29 MB

頁數(shù):22頁

時(shí)間:2024-09-02

上傳者:老李
重慶市渝北中學(xué)2024屆高三上學(xué)期9月月考數(shù)學(xué)題  Word版含解析.docx_第1頁
重慶市渝北中學(xué)2024屆高三上學(xué)期9月月考數(shù)學(xué)題  Word版含解析.docx_第2頁
重慶市渝北中學(xué)2024屆高三上學(xué)期9月月考數(shù)學(xué)題  Word版含解析.docx_第3頁
重慶市渝北中學(xué)2024屆高三上學(xué)期9月月考數(shù)學(xué)題  Word版含解析.docx_第4頁
重慶市渝北中學(xué)2024屆高三上學(xué)期9月月考數(shù)學(xué)題  Word版含解析.docx_第5頁
重慶市渝北中學(xué)2024屆高三上學(xué)期9月月考數(shù)學(xué)題  Word版含解析.docx_第6頁
重慶市渝北中學(xué)2024屆高三上學(xué)期9月月考數(shù)學(xué)題  Word版含解析.docx_第7頁
重慶市渝北中學(xué)2024屆高三上學(xué)期9月月考數(shù)學(xué)題  Word版含解析.docx_第8頁
重慶市渝北中學(xué)2024屆高三上學(xué)期9月月考數(shù)學(xué)題  Word版含解析.docx_第9頁
重慶市渝北中學(xué)2024屆高三上學(xué)期9月月考數(shù)學(xué)題  Word版含解析.docx_第10頁
資源描述:

《重慶市渝北中學(xué)2024屆高三上學(xué)期9月月考數(shù)學(xué)題 Word版含解析.docx》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。

渝北中學(xué)2023-2024學(xué)年高三9月月考質(zhì)量監(jiān)測(cè)數(shù)學(xué)試題(全卷共四大題22小題,總分150分,考試時(shí)長(zhǎng)120分鐘)注意事項(xiàng):1.答題前,考生務(wù)必將姓名、班級(jí)填寫清楚.2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色簽字筆書寫,字體工整、筆跡清晰.3.請(qǐng)按題號(hào)順序在答題卡的相應(yīng)區(qū)域作答,超出答題區(qū)域書寫的答案無效;在試卷和草稿紙上答題無效.一、選擇題(本大題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.已知集合,,則()A.B.C.D.【答案】B【解析】【分析】解一元二次不等式可得集合B,然后由交集定義可得.【詳解】集合,解不等式可得集合,所以.故選:B2.=()A.B.C.D.1【答案】B【解析】【分析】根據(jù)誘導(dǎo)公式與兩角和的正弦公式化簡(jiǎn)求值.【詳解】 故選:B3.已知直線是曲線的切線,則()A.B.1C.D.2【答案】B【解析】【分析】根據(jù)給定條件,求出函數(shù)的導(dǎo)數(shù),再利用導(dǎo)數(shù)的幾何意義求解作答.【詳解】函數(shù),求導(dǎo)得,令直線與曲線相切的切點(diǎn)為,于是且,所以.故選:B4.設(shè)命題甲:,是真命題;命題乙:函數(shù)在上單調(diào)遞減是真命題,那么甲是乙的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件【答案】B【解析】【分析】分別求出命題甲和命題乙對(duì)應(yīng)的的范圍,然后根據(jù)充分性和必要性的概念求解即可.【詳解】對(duì)于命題甲:因?yàn)槭情_口向上的二次函數(shù),所以對(duì)于,是真命題,則與軸無交點(diǎn),從而,解得;對(duì)于命題乙:函數(shù)在上單調(diào)遞減是真命題,由對(duì)數(shù)函數(shù)單調(diào)性可知,,解得, 因?yàn)?,所以甲是乙的必要不充分條件.故選:B.5.函數(shù)的部分圖象大致是()A.B.C.D.【答案】C【解析】【分析】分析函數(shù)的定義域、奇偶性及其在上的函數(shù)值符號(hào),結(jié)合排除法可得出合適的選項(xiàng).【詳解】對(duì)于函數(shù),有,可得,所以,函數(shù)的定義域?yàn)椋?,,所以,函?shù)為偶函數(shù),排除AB選項(xiàng);當(dāng)時(shí),,則,此時(shí),排除D選項(xiàng).故選:C.6.已知,且,則()A.B. C.D.【答案】D【解析】【分析】根據(jù)倍角公式可得,進(jìn)而可得,利用誘導(dǎo)公式逐項(xiàng)分析判斷.【詳解】因?yàn)?,可得,解得或,又因?yàn)?,則,可得.對(duì)于選項(xiàng)A:,故A錯(cuò)誤;對(duì)于選項(xiàng)B:,故B錯(cuò)誤;對(duì)于選項(xiàng)C:,故C錯(cuò)誤;對(duì)于選項(xiàng)D:,故D正確;故選:D.7.李明開發(fā)的小程序經(jīng)過t天后,用戶人數(shù),其中k為常數(shù).已知小程序發(fā)布經(jīng)過10天后有2000名用戶,則用戶超過50000名至少經(jīng)過的天數(shù)為()(?。〢.31B.32C.33D.34【答案】D【解析】【分析】依題意知,從而求得,再令,結(jié)合對(duì)數(shù)運(yùn)算可求得結(jié)果.【詳解】∵經(jīng)過t天后,用戶人數(shù),又∵小程序發(fā)布經(jīng)過10天后有2000名用戶,∴,即,可得,∴①當(dāng)用戶超過50000名時(shí)有,即,可得,∴② 聯(lián)立①和②可得,即,故,∴用戶超過50000名至少經(jīng)過的天數(shù)為34天.故選:D.8.設(shè),,,則()A.B.C.D.【答案】A【解析】【分析】要比較的大小只需比較與的大小,故考慮構(gòu)造函數(shù),利用函數(shù)的單調(diào)性比較其大小,要比較的大小,只需比較與的大小,故考慮構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,利用單調(diào)性比較大小即可.【詳解】因?yàn)?,又由函?shù),,可得,所以函數(shù)在上為減函數(shù),所以,所以,故,所以,因?yàn)?,,故要比較的大小只需比較與的大小,故只需比較與的大小,故考慮構(gòu)造函數(shù),其中, 由求導(dǎo)可得,所以函數(shù)在上單調(diào)遞增,所以,所以,所以,即,所以,即,所以,故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題解決的關(guān)鍵在于觀察被比較的數(shù)的結(jié)構(gòu)特征,確定兩者的結(jié)構(gòu)上的共性,考慮構(gòu)造函數(shù),利用函數(shù)的單調(diào)性確定被比較的數(shù)的大小.二、選擇題(本大題共4小題,每小題5分,共20分.在每小題給出的四個(gè)選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對(duì)的得5分,部分選對(duì)的得2分,有選錯(cuò)的得0分)9.已知函數(shù),則()A.函數(shù)的最小正周期為B.直線是函數(shù)圖象的一條對(duì)稱軸C.函數(shù)是偶函數(shù)D.函數(shù)的遞減區(qū)間為【答案】ABD【解析】【分析】根據(jù)題意,結(jié)合三角函數(shù)的圖象與性質(zhì),逐項(xiàng)判定,即可求解.詳解】由函數(shù), 對(duì)于A中,由三角函數(shù)的性質(zhì),可得的最小正周期為,所以A正確;對(duì)于B中,當(dāng)時(shí),可得,所以是函數(shù)圖象的一條對(duì)稱軸,所以B正確;對(duì)于C中,由,此時(shí)函數(shù)為奇函數(shù),所以C錯(cuò)誤;對(duì)于D中,令,解得,即函數(shù)的遞減區(qū)間為,所以D正確.故選:ABD.10.下列命題中的真命題有()A.當(dāng)時(shí),的最小值是3B.的最小值是2C.當(dāng)時(shí),的最大值是5D.若關(guān)于的不等式的解集為,則【答案】AC【解析】【分析】對(duì)于A、C:根據(jù)基本不等式分析判斷;對(duì)于B:根據(jù)對(duì)勾函數(shù)分析判斷;對(duì)于D:根據(jù)三個(gè)二次之間的關(guān)系分析判斷.【詳解】對(duì)于選項(xiàng)A:因?yàn)椋瑒t,所以,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,故選項(xiàng)A正確;對(duì)于選項(xiàng)B:因?yàn)椋?等號(hào)成立的條件是,所以等號(hào)不成立,不能使用基本不等式,令,則在上單調(diào)遞增,所以時(shí)取得最小值,故選項(xiàng)B錯(cuò)誤;對(duì)于選項(xiàng)C:因?yàn)?,則所以,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,故選項(xiàng)C正確;對(duì)于選項(xiàng)D:因?yàn)殛P(guān)于的不等式的解集為,所以的根為2,3,則,解得,所以,故選項(xiàng)D錯(cuò)誤.故選:AC.11.已知函數(shù),下列說法正確的是()A.在處的切線方程為B.C.若函數(shù)的圖象與的圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,則D.有唯一零點(diǎn)【答案】ABD【解析】【分析】利用導(dǎo)數(shù)的幾何意義求出切線方程判斷A;計(jì)算即可判斷B;利用對(duì)稱關(guān)系求出解析式判斷C;利用導(dǎo)數(shù)探討單調(diào)性結(jié)合零點(diǎn)存在性定理判斷D作答.【詳解】對(duì)于A,函數(shù),求導(dǎo)得,有,所以在處的切線方程為,即,A正確; 對(duì)于B,函數(shù),有,而,所以,B正確;對(duì)于C,函數(shù),函數(shù)的圖象與的圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,所以,C錯(cuò)誤;對(duì)于D,函數(shù)的定義域?yàn)镽,求導(dǎo)得,令,,當(dāng)時(shí),當(dāng)時(shí),,則函數(shù)在上遞增,在上遞減,于是,函數(shù)在上單調(diào)遞增,而,由零點(diǎn)存在性定理知在內(nèi)存在唯一零點(diǎn),所以有唯一零點(diǎn),D正確.故選:ABD12.已知函數(shù),的定義域均為,且滿足對(duì)任意實(shí)數(shù),,,若是偶函數(shù),,則()A.是周期為2的周期函數(shù)B.為奇函數(shù)C.是周期為4的周期函數(shù)D.【答案】BCD【解析】【分析】根據(jù)函數(shù)的奇偶性、周期性進(jìn)行分析,從而確定正確答案.【詳解】依題意,①,②,以替換②中的得③,由①③得④,令得,A選項(xiàng)錯(cuò)誤.由④得⑤,以替換⑤中的得,所以為奇函數(shù),B選項(xiàng)正確,且, 以替換②中的得⑥,由①⑥得⑦,以替換⑦中的得,所以,所以是周期為4的周期函數(shù),所以C選項(xiàng)正確.由,令,得,令,得,由,令,得,令,得,所以,所以,所以D選項(xiàng)正確.故選:BCD【點(diǎn)睛】求解抽象函數(shù)奇偶性、周期性等題目,關(guān)鍵點(diǎn)就是牢牢把握函數(shù)的性質(zhì)進(jìn)行分析,記住一些常見的結(jié)論是最好的辦法,如這是對(duì)稱性,并且是軸對(duì)稱;這也是對(duì)稱性,且是中心對(duì)稱.三、填空題(本大題共4小題,每小題5分,共20分.)13.設(shè)函數(shù),則_____________.【答案】【解析】【分析】根據(jù)導(dǎo)數(shù)的運(yùn)算法則,求得,代入即可求解.【詳解】由導(dǎo)數(shù)的運(yùn)算法則,可得,所以. 故答案為:.14.已知,則______.【答案】##-0.8【解析】【分析】根據(jù)正切的差角公式得出,再結(jié)合同角三角函數(shù)的平方關(guān)系,構(gòu)造齊次式化簡(jiǎn)弦為切計(jì)算即可.【詳解】由,又,代入得.故答案為:15.已知函數(shù)的圖象經(jīng)過定點(diǎn),若為正整數(shù),那么使得不等式在區(qū)間上有解的的最大值是__________.【答案】【解析】【分析】由可得出,由已知不等式結(jié)合參變量分離法可得出,令,求出函數(shù)在上的最大值,即可得出實(shí)數(shù)的取值范圍,即可得解.【詳解】由已知可得,則,解得,故,由得,因?yàn)?,則,可得,令,,則函數(shù)在上單調(diào)遞減, 所以,,.因此,正整數(shù)的最大值為.故答案為:.16.已知函數(shù),若函數(shù)有兩個(gè)極值點(diǎn),,且,則實(shí)數(shù)的取值范圍為_____.【答案】【解析】【分析】對(duì)函數(shù)求導(dǎo),函數(shù)有兩個(gè)極值點(diǎn),,則,化簡(jiǎn)得到,利用換元法令,則,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出,結(jié)合將參數(shù)分離出來,構(gòu)造函數(shù),即可得出.【詳解】所以,令,所以令,則令,則所以在上單調(diào)遞減,所以所以在上單調(diào)遞減,所以 令,則恒成立所以在上單調(diào)遞增,即【點(diǎn)睛】已知函數(shù)有零點(diǎn),求參數(shù)取值范圍常用的方法和思路(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式;再通過解不等式確定參數(shù)范圍.(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值城問題加以解決.(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖像,然后數(shù)形結(jié)合求解四、解答題(本大題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟)17.設(shè)函數(shù).(1)求函數(shù)的最小正周期;(2)將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù),求在上的最大值.【答案】(1)(2)【解析】【分析】(1)化簡(jiǎn)函數(shù),得到,進(jìn)而求得函數(shù)的最小正周期;(2)根據(jù)三角函數(shù)的圖象變換,得到,結(jié)合三角函數(shù)的性質(zhì),即可求解.【小問1詳解】解:由函數(shù),則,所以該函數(shù)的最小正周期;【小問2詳解】解:將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度 可得函數(shù),由,可得,所以當(dāng),即時(shí),函數(shù)取得最大值,最大值為.18.某校組織在校學(xué)生觀看學(xué)習(xí)“天宮課堂”,并對(duì)其中1000名學(xué)生進(jìn)行了一次“飛天宇航夢(mèng)”的調(diào)查,得到如下的兩個(gè)等高條形圖,其中被調(diào)查的男女學(xué)生比例為.(1)求m,n的值(結(jié)果用分?jǐn)?shù)表示);(2)完成以下表格,并根據(jù)表格數(shù)據(jù),依據(jù)小概率值的獨(dú)立性檢驗(yàn),能否判斷學(xué)生性別和是否有飛天宇航夢(mèng)有關(guān)?有飛天宇航夢(mèng)無飛天宇航夢(mèng)合計(jì)男女合計(jì)(3)在抽取的樣本女生中,按有無飛天宇航夢(mèng)用分層抽樣的方法抽取5人.若從這5人中隨機(jī)抽取3人進(jìn)一步調(diào)查,求抽到有飛天宇航夢(mèng)的女生人數(shù)X的分布列及數(shù)學(xué)期望.附臨界值表及參考公式:0.100.050.010.0050.00127063.8416.6357.87910.828,. 【答案】(1),;(2)列聯(lián)表見解析,不能(3)分布列見解析,【解析】【分析】(1)根據(jù)得到被調(diào)查的男女上的人數(shù),以及有飛天宇航夢(mèng)和無飛天宇航夢(mèng)的男生和女生的認(rèn)識(shí),進(jìn)而求得的值;(2)根據(jù)(1)中的數(shù)據(jù)列出的列聯(lián)表,求得的值,結(jié)合題意,即可得到結(jié)論;(3)根據(jù)題意,得到隨機(jī)變量的可能取值為,求得相應(yīng)的概率,列出分布列,結(jié)合期望的公式,即可求解.【小問1詳解】解:由題可知被調(diào)查的男女學(xué)生分別為600人,400人,男生有飛天宇航夢(mèng)的學(xué)生有人,無飛天宇航夢(mèng)的學(xué)生有人,女生有飛天宇航夢(mèng)的學(xué)生有人,無飛天宇航夢(mèng)的學(xué)生有人,所以,.【小問2詳解】解:根據(jù)(1)中數(shù)據(jù)填表,有飛天宇航夢(mèng)無飛天宇航夢(mèng)合計(jì)男420180600女240160400合計(jì)6603401000可得根據(jù)小概率的獨(dú)立性檢驗(yàn),所以沒有充分證據(jù)推斷不成立,因此可以認(rèn)為成立,即不能判斷學(xué)生性別和是否有飛天宇航夢(mèng)有關(guān).【小問3詳解】解:根據(jù)題意,在抽取的5名女生中,有3名女生有飛天宇航夢(mèng),2名女生無飛天宇航夢(mèng),則X 的可能取值為1,2,3,可得,,,故隨機(jī)變量的分布列為123所以的數(shù)學(xué)期望.19.已知函數(shù)的圖象關(guān)于直線對(duì)稱,且圖象相鄰兩個(gè)最高點(diǎn)的距離為.(1)求和的值;(2)若,求的值.【答案】(1),;(2).【解析】【分析】(1)根據(jù)對(duì)稱軸和周期可求和的值.(2)由題設(shè)可得,利用同角的三角函數(shù)的基本關(guān)系式可得,利用誘導(dǎo)公式和兩角和的正弦可求的值.【詳解】(1)因?yàn)閳D象相鄰兩個(gè)最高點(diǎn)的距離為,故周期為,所以,故.又圖象關(guān)于直線,故,所以,因?yàn)?,故.?)由(1)得, 因?yàn)椋?,因?yàn)?,故,故.又.【點(diǎn)睛】方法點(diǎn)睛:三角函數(shù)的中的化簡(jiǎn)求值問題,我們往往從次數(shù)的差異、函數(shù)名的差異、結(jié)構(gòu)的差異和角的差異去分析,處理次數(shù)差異的方法是升冪降冪法,解決函數(shù)名差異的方法是弦切互化,而結(jié)構(gòu)上差異的處理則是已知公式的逆用等,最后角的差異的處理則往往是用已知的角去表示未知的角.20.某基地蔬菜大棚采用水培、無土栽培方式種植各類蔬菜.過去50周的資料顯示,該地周光照量X(小時(shí))都在30小時(shí)以上,其中不足50小時(shí)的周數(shù)有5周,不低于50小時(shí)且不超過70小時(shí)的周數(shù)有35周,超過70小時(shí)的周數(shù)有10周.根據(jù)統(tǒng)計(jì),該基地的西紅柿增加量y(百斤)與使用某種液體肥料x(千克)之間對(duì)應(yīng)數(shù)據(jù)為如圖所示的折線圖.(1)依據(jù)數(shù)據(jù)的折線圖,是否可用線性回歸模型擬合y與x的關(guān)系?請(qǐng)計(jì)算相關(guān)系數(shù)r并加以說明(精確到0.01);(若則線性相關(guān)程度很高,可用線性回歸模型擬合)(2)蔬菜大棚對(duì)光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀最多可運(yùn)行臺(tái)數(shù)受周光照量X限制,并有如表關(guān)系:周光照量x(單位:小時(shí))光照控制儀最多可運(yùn)臺(tái)數(shù)321 若某臺(tái)光照控制儀運(yùn)行,則該臺(tái)光照控制儀周利潤(rùn)為3000元:若某臺(tái)光照控制儀未運(yùn)行,則該臺(tái)光照控制儀周虧損1000元.以過去50周的周光照量的頻率作為周光照量發(fā)生的概率,商家欲使周總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝光照控制儀多少臺(tái)?附:相關(guān)系數(shù)公式,參考數(shù)據(jù).【答案】(1),可用線性回歸模型擬合與的關(guān)系;(2)為使商家周利潤(rùn)的均值達(dá)到最大應(yīng)該安裝2臺(tái)光照控制儀.【解析】【分析】(1)由題意求出,,,,代入公式求值,從而得到回歸直線方程;(2)記商家周總利潤(rùn)為元,由條件可知至少需要安裝1臺(tái),最多安裝3臺(tái)光照控制儀,安裝1臺(tái)光照控制儀可獲得周總利潤(rùn)3000元;安裝2臺(tái)或3臺(tái)光照控制儀的情況,分別列出分布列算出期望,然后作比較可得答案.【詳解】(1)由已知數(shù)據(jù)可得,,因,,,所以相關(guān)系數(shù),因?yàn)?,所以可用線性回歸模型擬合與的關(guān)系.(2)記商家周總利潤(rùn)為元,由條件可知至少需要安裝1臺(tái),最多安裝3臺(tái)光照控制儀.①安裝1臺(tái)光照控制儀可獲得周總利潤(rùn)3000元②安裝2臺(tái)光照控制儀的情形當(dāng)時(shí),只有1臺(tái)光照控制儀運(yùn)行,此時(shí)周總利潤(rùn)元, 當(dāng)時(shí),2臺(tái)光照控制儀都運(yùn)行,此時(shí)周總利潤(rùn)元,故的分布列為:200060000.20.8所以元.③安裝3臺(tái)光照控制儀的情形當(dāng)時(shí),只有1臺(tái)光照控制儀運(yùn)行,此時(shí)周總利潤(rùn)元,當(dāng)時(shí),2臺(tái)光照控制儀都運(yùn)行,此時(shí)周總利潤(rùn)元,當(dāng)時(shí),3臺(tái)光照控制儀都運(yùn)行,此時(shí)周總利潤(rùn)元,故的分布列為:9000500010000.10.70.2所以元.綜上可知,為使商家周利潤(rùn)的均值達(dá)到最大應(yīng)該安裝2臺(tái)光照控制儀.【點(diǎn)睛】本題考查了線性回歸方程的求法及應(yīng)用,分布列的求法,利潤(rùn)的計(jì)算,屬于中檔題.21.已知函數(shù),.(1)若在處取得極值,求的的單調(diào)區(qū)間;(2)若在上沒有零點(diǎn),求的取值范圍.【答案】(1)增區(qū)間為,減區(qū)間為;(2).【解析】【分析】(1)若在處取得極值,則,求出,再代入求單調(diào)區(qū)間;(2)因?yàn)?,所以只需證明在滿足,對(duì)進(jìn)行分類討論即可.【詳解】(1)的定義域,,,,遞增區(qū)間為, ,遞減區(qū)間,所以遞增區(qū)間為,遞減區(qū)間為.(2),,因?yàn)?,所以只需證明在滿足.當(dāng)時(shí),在恒成立,在上遞減,,得,與矛盾;②當(dāng)時(shí),,遞減,,遞增,,所以③,在恒成立,在上遞增,,滿足題意,綜上有,.【點(diǎn)睛】考查求函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的零點(diǎn)情況求參數(shù)的范圍,函數(shù)的零點(diǎn)情況轉(zhuǎn)化為研究函數(shù)的值域,進(jìn)一步確定參數(shù)范圍;屬于較難題.22.(1)求證:當(dāng)時(shí),;(2)若關(guān)于的方程在內(nèi)有解,求實(shí)數(shù)的取值范圍.【答案】(1)證明見解析(2)【解析】【分析】(1)對(duì)函數(shù)求導(dǎo)后,再構(gòu)造函數(shù),求導(dǎo)后在上為增函數(shù),再由,得在上為增函數(shù),從而可證得結(jié)論; (2)先證得,則令,原問題等價(jià)于在內(nèi)有零點(diǎn),由(1)可知當(dāng)時(shí),函數(shù)沒有零點(diǎn),當(dāng)時(shí),連續(xù)兩次求導(dǎo)結(jié)合零點(diǎn)存在性定理求出的單調(diào)區(qū)間,再判斷函數(shù)的零點(diǎn),從而可求得結(jié)果.【詳解】(1)證明:令,則,令,則,因?yàn)椋?,即在上為增函?shù),所以,故在上為增函數(shù),所以,即成立(2)解:設(shè),由于,則,所以在上為增函數(shù),所以,即.方程等價(jià)于.令,原問題等價(jià)于在內(nèi)有零點(diǎn),由,得.由(1)知當(dāng)時(shí),,此時(shí),當(dāng)時(shí),函數(shù)沒有零點(diǎn),不合題意,故舍去.當(dāng)時(shí),因?yàn)?,所以,令,則.當(dāng)時(shí),恒成立,所以單調(diào)遞增.當(dāng)時(shí),令,則.因?yàn)?,,所以,所以單調(diào)遞增.又,, 因此在上存在唯一的零點(diǎn),且.當(dāng)時(shí),,所以單調(diào)遞減;當(dāng)時(shí),,所以單調(diào)遞增.又,,,因此在上存在唯一的零點(diǎn),且.當(dāng)時(shí),,所以單調(diào)遞減;當(dāng)時(shí),,所以單調(diào)遞增.又,,由(1)知,所以,所以在上沒有零點(diǎn),在上存在唯一零點(diǎn),因此在上有唯一零點(diǎn).綜上,的取值范圍是.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查導(dǎo)數(shù)的綜合應(yīng)用,考查利用導(dǎo)數(shù)證明不等式,考查利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)問題,第(2)問解題有關(guān)鍵是對(duì)方程化簡(jiǎn)變形后構(gòu)造函數(shù),將原問題轉(zhuǎn)化為在內(nèi)有零點(diǎn),然后利用導(dǎo)數(shù)和零點(diǎn)存在性定理求解,考查數(shù)學(xué)轉(zhuǎn)化思想和計(jì)算能力,屬于難題.

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。
最近更新
更多
大家都在看
近期熱門
關(guān)閉