資源描述:
《Introduction to Quantum Mechanics.pdf》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、Chapter2IntroductiontoQuantumMechanics2-2Schrodinger’sWaveEquation為什麼要解薛丁格方程式,因?yàn)槲覀円涝诎雽?dǎo)體中的電子能階。例如對於發(fā)光半導(dǎo)體而言,知道能階才能知道此材料要發(fā)什麼樣顏色的光。透過解薛丁格方程式把電子的機(jī)率波解出來,然後透過電子的能量運(yùn)算子對機(jī)率波作用即可解出電子的能階。ExplanationofClassicalElectronDiffractionAgun(obeyingclassicalphysics)spraysbulletsto
2、wardsatarget.Beforetheyreachthetarget,theymustpassthroughascreenwithtwoslits.Ifbulletsgothroughtheslitstheywillmostlikelylanddirectlybehindtheslit,butiftheycomeinataslightangle,theywilllandslightlytothesides.Theresultingpatternisamapofthelikelihoodofabulletlandi
3、ngateachpoint.古典力學(xué)觀點(diǎn)DoubleSlitExperimentforParticlesTheabovetwo-slitpatternhappenstobesimplythesumofthepatternsforeachslitconsideredseparately:ifhalfthebulletswerefiredwithonlytheleftslitopenandthenhalfwerefiredwithjusttherightslitopen,theresultwouldbethesame.Wi
4、thwaves,however,theresultisverydifferent,becauseofinterference.Iftheslitswereopenedoneatatime,thepatternwouldresemblethatforbullets:twodistinctpeaks.Butwhenbothslitsareopen,thewavespassthroughbothslitsatonceandinterferewitheachother:wheretheyareinphasetheyreinfo
5、rceeachother;wheretheyareoutofphasetheycanceleachotherout.古典力學(xué)觀點(diǎn)DoubleSlitExperimentforWavesNowthequantumparadox:Electrons,likebullets,strikethetargetoneatatime.Yet,likewaves,theycreateaninterferencepattern.量子力學(xué)觀點(diǎn):波動,粒子雙元性DoubleSlitExperimentforElectronsIfeachel
6、ectronpassesindividuallythroughoneslit,withwhatdoesit"interfere?"Althougheachelectronarrivesatthetargetatasingleplaceandtime,itseemsthateachhaspassedthrough-orsomehowfeltthepresenceofbothslitsatonce.Thus,theelectronisunderstoodintermsofawave-particleduality.量子力學(xué)
7、觀點(diǎn):波動,粒子雙元性Illustrationof"Wave-ParticleDuality"2-2Schrodinger’sWaveEquation22???)t,x(??)t,x(??V)x(?)t,x(?j?2m2?t?x?)t,x(?wavefunctionofelectron電子機(jī)率波V)x(?potentialfunction電子所處位置的位能m?electronmass電子的質(zhì)量t?timescale,x?xscaleAssumethatthewavefunctioncanbewritteninthefo
8、rm?)t,x(??)x(?(t)帶入薛丁格方程式where?)x(isafunctionofpositionxonlyand?(t)aisfunctionoftimetonly.22???)x(??)t(??)t(?V)x(?)x(?)t(?j??)x(2m2?t?x22?1??)x(1??)t(??V)x(?j?2m?)x(2