資源描述:
《基于MICA方法的間歇過程監(jiān)控研究》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、中國(guó)石油大學(xué)(華東)碩士學(xué)位論文基于MICA方法的間歇過程監(jiān)控研究姓名:張曉玲申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):控制理論與控制工程指導(dǎo)教師:田學(xué)民20080501獨(dú)立成分,并利用,2和SPE統(tǒng)計(jì)圖監(jiān)測(cè)過程中是否有故障發(fā)生。FS.MKICA方法不僅能提取間歇過程中的非線性特性,而且減少了基于全部樣本建模的計(jì)算代價(jià),對(duì)青霉素發(fā)酵過程的監(jiān)控結(jié)果顯示,該非線性算法比線性MICA方法檢測(cè)故障時(shí)更靈敏。關(guān)鍵詞:間歇過程,故障檢測(cè)與診斷,多向獨(dú)立成分分析,自適應(yīng)算法,非線性BatchProcessMonitoringBased011MICAMethodsZhangXiaoling(ControlTheoryandCo
2、ntrolEngineering)DirectedbyProf.TianXueminAbstractprocesseshavebecomemoreandmoreimportantinmodemindustrialprocesses.Inensuringthesafetyandstabilityofbatchprocessesandhighqualityfmalproduct,on-linemonitoringandfaultdiagnosisinbatchprocessesemergeasanessentialandimportanttask.Asthedevelopmentofon-line
3、measurementinstrurnentsandcomputertechnology,largeamountsofprocessvariables’datacanbecollectedmoreeasilythanbefore.ThedataCanbeanalyzedtosupervisetheprocessbehavior,byminingthevaluableinformationandresources.Multi-wayprincipalcomponentanalysis(MPCA)andmulti-waypartialleastsquares(MPLS),whichassumeth
4、atthevariablesmustsubjecttothenormaldistributionconditionandonlyutilizethesecond—orderstatisticalinformation,areusedmostwidelymultivariatestatisticaltechniqueinbatchprocessesmonitoring.Multi-wayindependentcomponentanalysis(MICA),onetypeofmultivariatestatisticalmethodbasedonICAtechnique,isrecentlydev
5、elopedtoapplytothebatchprocessesmonitoring.ThismethodCantreat、析ththree—waydataofbatchprocessesmoreeffectivelybecauseitutilizesthehiIgh—orderstatisticalinformationandavoidstheassumptionofGaussiandistribution.Inaddition,theextractedlatentvariablesbyMICAarestatisticallyindependentwhileprincipalcomponen
6、tsgeneratedfromMPCAalemerelyde-correlated.Therefore,theindependentvariablesorcomponentscandescribetheprocessescharacteristicmoreintrinsicallythanMPCAorMPLS.Inthiswork,MICAbatchmonitoringmethodisdiscussedandconsideringthecharacteristicsofbatchprocesses,twonewkindsofmonitoringmethodsareproposedbasedon
7、MICA.Inviewofbatch—to—batchvariationinmostindustrialbatchprocesses,anadaptiveMICAmethodisproposedtocapturethedynamicvariationamongdifferentbatches.ThisapproachfirstestablishesanMICAmodelbasedonthehist