資源描述:
《基于MICA方法的間歇過程監(jiān)控研究》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在學術論文-天天文庫。
1、中國石油大學(華東)碩士學位論文基于MICA方法的間歇過程監(jiān)控研究姓名:張曉玲申請學位級別:碩士專業(yè):控制理論與控制工程指導教師:田學民20080501獨立成分,并利用,2和SPE統(tǒng)計圖監(jiān)測過程中是否有故障發(fā)生。FS.MKICA方法不僅能提取間歇過程中的非線性特性,而且減少了基于全部樣本建模的計算代價,對青霉素發(fā)酵過程的監(jiān)控結果顯示,該非線性算法比線性MICA方法檢測故障時更靈敏。關鍵詞:間歇過程,故障檢測與診斷,多向獨立成分分析,自適應算法,非線性BatchProcessMonitoringBased011MICAMethodsZhangXiaoling(ControlTheoryandCo
2、ntrolEngineering)DirectedbyProf.TianXueminAbstractprocesseshavebecomemoreandmoreimportantinmodemindustrialprocesses.Inensuringthesafetyandstabilityofbatchprocessesandhighqualityfmalproduct,on-linemonitoringandfaultdiagnosisinbatchprocessesemergeasanessentialandimportanttask.Asthedevelopmentofon-line
3、measurementinstrurnentsandcomputertechnology,largeamountsofprocessvariables’datacanbecollectedmoreeasilythanbefore.ThedataCanbeanalyzedtosupervisetheprocessbehavior,byminingthevaluableinformationandresources.Multi-wayprincipalcomponentanalysis(MPCA)andmulti-waypartialleastsquares(MPLS),whichassumeth
4、atthevariablesmustsubjecttothenormaldistributionconditionandonlyutilizethesecond—orderstatisticalinformation,areusedmostwidelymultivariatestatisticaltechniqueinbatchprocessesmonitoring.Multi-wayindependentcomponentanalysis(MICA),onetypeofmultivariatestatisticalmethodbasedonICAtechnique,isrecentlydev
5、elopedtoapplytothebatchprocessesmonitoring.ThismethodCantreat、析ththree—waydataofbatchprocessesmoreeffectivelybecauseitutilizesthehiIgh—orderstatisticalinformationandavoidstheassumptionofGaussiandistribution.Inaddition,theextractedlatentvariablesbyMICAarestatisticallyindependentwhileprincipalcomponen
6、tsgeneratedfromMPCAalemerelyde-correlated.Therefore,theindependentvariablesorcomponentscandescribetheprocessescharacteristicmoreintrinsicallythanMPCAorMPLS.Inthiswork,MICAbatchmonitoringmethodisdiscussedandconsideringthecharacteristicsofbatchprocesses,twonewkindsofmonitoringmethodsareproposedbasedon
7、MICA.Inviewofbatch—to—batchvariationinmostindustrialbatchprocesses,anadaptiveMICAmethodisproposedtocapturethedynamicvariationamongdifferentbatches.ThisapproachfirstestablishesanMICAmodelbasedonthehist