資源描述:
《改進的核函數(shù)算法及其在說話人辨認中的應用研究》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在學術論文-天天文庫。
1、北京交通大學碩士學位論文改進的核函數(shù)算法及其在說話人辨認中的應用研究姓名:胡若華申請學位級別:碩士專業(yè):通信與信息系統(tǒng)指導教師:張有根20080601ABS瞰CTABSTRACT:Duetoitsspecialmeritsofflexibility,economyandaccuracy,speakerrecognitiontechnologyhasabroadapplicationfutureinbiometricsidentityverificationfield.However,speakerrecognitionhassomelimitsinapplicationbecause
2、thetrainingalgorithmiscomplicated,andtherobustnessisnotideal.SupportVectorMachine(SVM)isanewclassificationmethodology.Ithasbeenprovedtobeapowerfultechniqueinpatternclassificationforitsgoodgeneralizationability.ButSVMhassomedisadvantagesinsomeaspectforit’Sstillinthedevelopingstage.Thethesisfocus
3、onhowtoimprovetherecognitionratioandrobustnessofspeakerrecognitionsystembygeneratingnewkernelsbasedonsupervector.Themaincontributionsofthedissertationareasfollows:(1)Theadvancedfeatureparameterextraction.ThisthesisintroducesGaussianMixtureUniversalBackgroundModel(GMM-UBM)intospeakerrecognitionm
4、odeling.UBMUSeSspeaker-independentdistributionparameterstoapproximateparametersforacousticunitswhichareabsentinspecifiedspeaker’Strainingdata.ThenstackthemeansoftheGMMmodelwhichisadaptedbyMAPalgorithmtoformGMMmeansupervector.(2)Theadoptionofnewkernels,suchasKullbackLeiblerDivergencekernel,rinne
5、rproductkernelandNAPkernel.ThesethreenewkernelsareallbasedonGMMsupervector.TheSVMusingthekernelsbasedonGMMsupervectorCanbeusedtoclassifywhollyonthesequence.Meanwhile,inordertoenhancetherobustnessofthesystem,thethesisadoptkernelbasedonNuisanceAttributeProjection.Thiskindofkernelgetsridofredundan
6、tinformationfromthesubspacewhichhasnorelationshipwiththespeakerfeature.(3)Basedonpeoplevoicedatabase,wetakeemulationexperiments.First,wecomparetheadvancedfeatureextractionmethodwithRBFkernelandpolynomialkernel.Second,weapplythesethreenewkernelstospeakeridentification.Fromtheresult,wecanseethese
7、threenewkernelsimprovedrecognitionratioatleastby12%,andNAPkernelimprovedtherobustnessofthesystemalot.KEYWORDS:Speakeridentification;SupportVectorMachine;GMMSupervectorKernel;PrincipalComponentAnalysis(PCA);NuisanceAttributeProject