資源描述:
《改進(jìn)的核函數(shù)算法及其在說(shuō)話人辨認(rèn)中的應(yīng)用研究》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、北京交通大學(xué)碩士學(xué)位論文改進(jìn)的核函數(shù)算法及其在說(shuō)話人辨認(rèn)中的應(yīng)用研究姓名:胡若華申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):通信與信息系統(tǒng)指導(dǎo)教師:張有根20080601ABS瞰CTABSTRACT:Duetoitsspecialmeritsofflexibility,economyandaccuracy,speakerrecognitiontechnologyhasabroadapplicationfutureinbiometricsidentityverificationfield.However,speakerrecognitionhassomelimitsinapplicationbecause
2、thetrainingalgorithmiscomplicated,andtherobustnessisnotideal.SupportVectorMachine(SVM)isanewclassificationmethodology.Ithasbeenprovedtobeapowerfultechniqueinpatternclassificationforitsgoodgeneralizationability.ButSVMhassomedisadvantagesinsomeaspectforit’Sstillinthedevelopingstage.Thethesisfocus
3、onhowtoimprovetherecognitionratioandrobustnessofspeakerrecognitionsystembygeneratingnewkernelsbasedonsupervector.Themaincontributionsofthedissertationareasfollows:(1)Theadvancedfeatureparameterextraction.ThisthesisintroducesGaussianMixtureUniversalBackgroundModel(GMM-UBM)intospeakerrecognitionm
4、odeling.UBMUSeSspeaker-independentdistributionparameterstoapproximateparametersforacousticunitswhichareabsentinspecifiedspeaker’Strainingdata.ThenstackthemeansoftheGMMmodelwhichisadaptedbyMAPalgorithmtoformGMMmeansupervector.(2)Theadoptionofnewkernels,suchasKullbackLeiblerDivergencekernel,rinne
5、rproductkernelandNAPkernel.ThesethreenewkernelsareallbasedonGMMsupervector.TheSVMusingthekernelsbasedonGMMsupervectorCanbeusedtoclassifywhollyonthesequence.Meanwhile,inordertoenhancetherobustnessofthesystem,thethesisadoptkernelbasedonNuisanceAttributeProjection.Thiskindofkernelgetsridofredundan
6、tinformationfromthesubspacewhichhasnorelationshipwiththespeakerfeature.(3)Basedonpeoplevoicedatabase,wetakeemulationexperiments.First,wecomparetheadvancedfeatureextractionmethodwithRBFkernelandpolynomialkernel.Second,weapplythesethreenewkernelstospeakeridentification.Fromtheresult,wecanseethese
7、threenewkernelsimprovedrecognitionratioatleastby12%,andNAPkernelimprovedtherobustnessofthesystemalot.KEYWORDS:Speakeridentification;SupportVectorMachine;GMMSupervectorKernel;PrincipalComponentAnalysis(PCA);NuisanceAttributeProject