資源描述:
《關(guān)于多跑道機場噪聲優(yōu)化預(yù)測方法》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、文章編號:1006—9348(2016)12—0062—07關(guān)于多跑道機場噪聲優(yōu)化預(yù)測方法徐濤k2,胡惠裕1(1.中國民航大學(xué)計算機科學(xué)與技術(shù)學(xué)院,天津300300;2.中國民航信息技術(shù)科研基地,天津300300)摘要:多跑道機場噪聲預(yù)測是機場規(guī)劃和改擴建的重要基礎(chǔ),隨著機場跑道數(shù)量的增加,航班、跑道、飛行程序之間組合更加多樣化,機場噪聲預(yù)測問題更加復(fù)雜。為了得到可靠性高的預(yù)測結(jié)果,根據(jù)不同跑道的航跡聚類和機型聚類,把聚類結(jié)果的每簇中心航跡和代表機型數(shù)據(jù)組合導(dǎo)人INM(IntegratedNoiseModel
2、s)計算噪聲值構(gòu)成噪聲數(shù)據(jù)庫,通過貝葉斯分類算法構(gòu)建了一個采用貝葉斯分類的多跑道機場噪聲預(yù)測模型。輸入航班號、機型、航跡、目的地、出港點等基礎(chǔ)數(shù)據(jù)即可快速確定航跡、枧型所屬類別和跑道號,然后查詢噪聲數(shù)據(jù)庫得到噪聲預(yù)測結(jié)果。實驗結(jié)果表明,上述模型能夠在一定誤差范圍內(nèi)方便快捷地預(yù)測出機場周圍敏感點的噪聲,從而驗證了預(yù)測模型的合理性和有效性。關(guān)鍵詞:機場噪聲預(yù)測;航跡聚類;機型聚類;貝葉斯分類中圖分類號:TP399文獻(xiàn)標(biāo)識碼:BOptimizationofMulti—-RunwayAirportsNoisePred
3、ictionXUTaok2.HUHui—vul(1.CollegeofComputerScienceandTechnology,CivilAviationUniversityofChina,Ti刪in300300,China;2。InformationTechnologyResearchBaseofCivilAviationAdministrationofChina,Tianjin300300,China)ABSTRACT:Muhi—runwayairportsnoisepredictionistheimpo
4、rtantbasisofairportplanandexpansion.Withtheincreaseinthenumberofairportrunway,thecombinationsofflights,runwaysandflightproceduresaremorediverseandthenoisepredictionofmulti—runwayairportsismorecomplexly.Therefore,inordertoobtainthehighreliabili—typredictionr
5、esults,thispaperfocusedontrackclusteringandaircrafttypeclustering.Andthenthedataoftheten-tertrackofeachclusterandtherepresentativemodelsofeachclusterwereinputintoIntegratedNoiseModels(INM)tocalculatethenoisevalueandconstitutethenoisedatabase.Amuhi—runwayair
6、portnoisepredictionmodelbasedonBayesianclassificationwasproposedwithBayesianclassificationalgorithm.Oncethedataofflightnumber.a(chǎn)ir-crafttype,track,destinationanddeparturepointareinputintothemodel,thetrack,aircrafttypeandthecoderofrunwayCanbequicklydetermined
7、.Thenthenoisepredictionresultscanbeobtainedbyqueryingthenoisedatabase,Experimentalresultsshowthattheproposedmodelcanbeusedtopredictthenoiseofthesensitivepointsaroundtheairportwithinacertainerrorrange.Therefore,therationalityandvalidityofthemodelareverified.
8、KEYWORDS:Airportnoiseprediction;Trackclustering;Aircrafttypeclustering;Bayesianclassification1引言近年來,隨著民航客貨運輸量的迅猛增長,機場擴容、跑道擴建,旅客出行更加快捷方便。與此同時,機場用地與周邊城鎮(zhèn)地區(qū)越來越近,噪聲污染問題也日益凸顯,已引起了基金項目:國家科技支撐計劃課題(2014BAJ04802