資源描述:
《模糊數(shù)學(xué)1 集合運(yùn)算.ppt》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、BASICS–LectureFuzzySet&TheoryOBJECTIVES1.Todefinethebasicideas(概念)andentities(本質(zhì))infuzzysettheory(模糊集合理論)2.Tointroducetheoperationsandrelationsonfuzzysets(模糊集合)3.Tolearnhowtocomputewithfuzzysetsandnumbers(模糊集合與模糊數(shù))-arithmetic(計(jì)算),unions(并),intersections(交),complements(補(bǔ))1OUTLINEII
2、.BASICSA.Definitionsandexamples1.Sets(集合的定義)2.Fuzzynumbers(模糊數(shù)的定義)B.Operationsonfuzzysets–union(并),intersection(交),complement(補(bǔ))C.Operationsonfuzzynumbers–arithmetic,equations,functionsandtheextensionprinciple(擴(kuò)展定理)2DEFINITIONSA.Definitions1.Setsa.Classicalsets–eitheranelementbelon
3、gstothesetoritdoesnot.Forexample,forthesetofintegers,eitheranintegerisevenoritisnot(itisodd).However,eitheryouareintheUSAoryouarenot.WhataboutflyingintoUSA,whathappensasyouarecrossing?Anotherexampleisforblackandwhitephotographs,onecannotsayeitherapixeliswhiteoritisblack.However,whe
4、nyoudigitizeab/wfigure,youturnalltheb/wandgrayscalesinto256discretetones.3ClassicalsetsClassicalsetsarealsocalledcrisp(sets).(緊集)Lists:A={apples,oranges,cherries,mangoes}A={a1,a2,a3}A={2,4,6,8,…}Formulas:A={x
5、xisaneven(偶的)naturalnumber}A={x
6、x=2n,nisanaturalnumber}Membershiporcharac
7、teristicfunction(特征函數(shù)的隸屬度)4Definitions–fuzzysetsb.Fuzzysets–admitsgradation(漸變)suchasalltones(色調(diào))betweenblackandwhite(黑與白之間).Afuzzysethasagraphicaldescriptionthatexpresseshowthetransition(過渡)fromonetoanothertakesplace.Thisgraphicaldescriptioniscalledamembershipfunction(隸屬函數(shù)).5Defin
8、itions–fuzzysets(figurefromKlir&Yuan)6Definitions:FuzzySets(figurefromKlir&Yuan)7Membershipfunctions(figurefromKlir&Yuan)8Fuzzyset(figurefromEarlCox)9FuzzySet(figurefromEarlCox)10TheGeometryofFuzzySets(figurefromKlir&Yuan)11Alphalevels,core,support,normal12Definitions:RoughSetsArou
9、ghsetisbasicallyanapproximationofacrispsetAintermsoftwosubsetsofacrisppartition,X/R,definedontheuniversalsetX.Definition:Aroughset,R(A),isagivenrepresentationofaclassical(crisp)setAbytwosubsetsofX/R,andthatapproachAascloselyaspossiblefromtheinsideandoutside(respectively)andwhereand
10、arecalledtheloweranduppera