資源描述:
《智能電網(wǎng)用戶側(cè)信息隱私保護方法的研究及應(yīng)用》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、1第卷第期電力系統(tǒng)自動化Vol.No.年月日AutomationofElectricPowerSystems智能電網(wǎng)用戶側(cè)信息隱私保護方法的研究與應(yīng)用*郭曉利,張佳佳,王秀磊(東北電力大學(xué)信息工程學(xué)院,吉林吉林132012)摘要:在智能電網(wǎng)的不斷建設(shè)和發(fā)展過程中積累了大量的基礎(chǔ)用電數(shù)據(jù),這些數(shù)據(jù)不僅具有海量、高頻、分散等特點,是時空、動態(tài)、關(guān)系等性質(zhì)復(fù)雜的數(shù)據(jù),而且數(shù)據(jù)之間存在關(guān)聯(lián)性和相似性。因此,傳統(tǒng)的隱私保護方法對電力數(shù)據(jù)保護會有較大的信息損失,時間損耗,基于數(shù)據(jù)分類處理的思想,提出支持多屬性泛化的隨機化的隱私保護方法對電力信息數(shù)據(jù)進行分級保護,將準標識符屬性屬性按照自底向上支持多屬性
2、泛化的算法處理,敏感屬性進行隨機化算法處理,生成保護后的新數(shù)據(jù)表。通過與廣泛應(yīng)用的MBF算法,GASCG算法進行實驗比較得出結(jié)論,該方法可以極大的提高隱私保護的效率降低個人信息的損失并且數(shù)據(jù)的效用性大大提高。關(guān)鍵詞:數(shù)據(jù)分類處理;k-匿名;泛化;隨機擾動;多敏感屬性中圖分類號:TM93文獻標識碼:B文章編號:1001–1390(2016)00–0000–00Theresearchandapplicationofinformationprivacyprotectionmethodforsmartgriduser-sidesinformationprivacyprotectionmethodG
3、uoXiaoli1,ZhangJiajia2,WangXiuLei3(InformationengineeringEngineeringcollegeCollege,ofNortheastDianliUniversity,Jilin132012,Jilin,China)Abstract:AAbstract:greatdealofbasicdataAgreatdealofbasicelectricitydatahasbeenconstructedinthedevelopmentofelectricitysmartgridhavebeenconstructed.Thesedataarenoto
4、nlymassive,high-frequency,dispersionandthenatureoftimeandspace,dynamichas,complexdatarelationships,andbutalsothereisrelevanceandcomparabilitybetweenthedata.Thereforedata.Therefore,thetraditionalmethodofprivacyprotectionwillcausegreaterimformationinformationlossandtimeconsumption.Basedconsumption.B
5、asedontheideaofdataclassification,thispaperproposedamethodwhichcanprotectthepowerratinginformation.Bottominformation.Anewdatatableprotectionisconductedthroughbottom-upgeneralizationthequasi-identifierattributes,andtherandomizedsensitiveattributes,thenattributesarerandomizedgenerateanewdatatableaft
6、erprotection.TheexperimentresultsshowthatcomparedwiththewidelyusedalgorithmMBFandGASCG,themethodcangreatlyimprovetheefficiencyoftheprivacyprotectionwhilereducethelesspersonalinformationandtheeffectivenessofdataisgreatlyincreased.Keywords:disposaldifferentkindsofdata,k-annonmyanonym,generalization,
7、stochasticdisturbance,multi-sensitiveattributes1第??卷第??期電測與儀表Vol.??No.50420??年第??期ElectricalMeasurement&InstrumentationDec.20??0引言在智能電網(wǎng)的不斷建設(shè)和發(fā)展過程中積累了大量的基礎(chǔ)用電數(shù)據(jù),這些數(shù)據(jù)不僅具有海量、高頻、分散等特點,是時空、動態(tài)、關(guān)系等性質(zhì)復(fù)雜的數(shù)據(jù),而且數(shù)據(jù)之間存在關(guān)聯(lián)性和相似性