資源描述:
《淺論數(shù)學(xué)直覺(jué)思維及培養(yǎng) _0》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在應(yīng)用文檔-天天文庫(kù)。
1、淺論數(shù)學(xué)直覺(jué)思維及培養(yǎng)淺論數(shù)學(xué)直覺(jué)思維及培養(yǎng)淺論數(shù)學(xué)直覺(jué)思維及培養(yǎng)淺論數(shù)學(xué)直覺(jué)思維及培養(yǎng)淺論數(shù)學(xué)直覺(jué)思維及培養(yǎng)淺論數(shù)學(xué)直覺(jué)思維及培養(yǎng) 中學(xué)數(shù)學(xué)教學(xué)大綱(試驗(yàn)修訂本)將培養(yǎng)學(xué)生的三大能力之一”邏輯思維能力”改為”思維能力”,雖然只是去掉兩個(gè)字,概念的內(nèi)涵卻更加豐富,人們?cè)诮逃膶?shí)踐中實(shí)現(xiàn)了認(rèn)識(shí)上的轉(zhuǎn)變。在注重邏輯思維能力培養(yǎng)的同時(shí),還應(yīng)該注重觀察力、直覺(jué)力、想象力的培養(yǎng)。特別是直覺(jué)思維能力的培養(yǎng)由于長(zhǎng)期得不到重視,學(xué)生在學(xué)習(xí)的過(guò)程中對(duì)數(shù)學(xué)的本質(zhì)容易造成誤解,認(rèn)為數(shù)學(xué)是枯燥乏味的;同時(shí)對(duì)數(shù)學(xué)的學(xué)習(xí)也缺乏取得成功的必要的信心,從而喪失數(shù)學(xué)學(xué)習(xí)的興趣。過(guò)多的注重邏輯思維
2、能力的培養(yǎng),不利于思維能力的整體發(fā)展。培養(yǎng)直覺(jué)思維能力是社會(huì)發(fā)展的需要,是適應(yīng)新時(shí)期社會(huì)對(duì)人才的需求?! ∫?、數(shù)學(xué)直覺(jué)概念的界定 簡(jiǎn)單的說(shuō),數(shù)學(xué)直覺(jué)是具有意識(shí)的人腦對(duì)數(shù)學(xué)對(duì)象(結(jié)構(gòu)及其關(guān)系)的某種直接的領(lǐng)悟和洞察?! ?duì)于直覺(jué)作以下說(shuō)明: (1)直覺(jué)與直觀、直感的區(qū)別 直觀與直感都是以真實(shí)的事物為對(duì)象,通過(guò)各種感覺(jué)器官直接獲得的感覺(jué)或感知。例如等腰三角形的兩個(gè)底角相等,兩個(gè)角相等的三角形是等腰三角形等概念、性質(zhì)的界定并沒(méi)有一個(gè)嚴(yán)格的證明,只是一種直觀形象的感知。而直覺(jué)的研究對(duì)象則是抽象的數(shù)學(xué)結(jié)構(gòu)及其關(guān)系。龐加萊說(shuō):”直覺(jué)不必建立在感覺(jué)明白之上.感覺(jué)不久便會(huì)變
3、的無(wú)能為力。例如,我們?nèi)詿o(wú)法想象千角形,但我們能夠通過(guò)直覺(jué)一般地思考多角形,多角形把千角形作為一個(gè)特例包括進(jìn)來(lái)?!庇纱丝梢娭庇X(jué)是一種深層次的心理活動(dòng),沒(méi)有具體的直觀形象和可操作的邏輯順序作思考的背景。正如迪瓦多內(nèi)所說(shuō):”這些富有創(chuàng)造性的科學(xué)家與眾不同的地方,在于他們對(duì)研究的對(duì)象有一個(gè)活全生的構(gòu)想和深刻的了解,這些構(gòu)想和了解結(jié)合起來(lái),就是所謂’’’’直覺(jué)’’’’……,因?yàn)樗m用的對(duì)象,一般說(shuō)來(lái),在我們的感官世界中是看不見的?!薄 ?2)直覺(jué)與邏輯的關(guān)系 從思維方式上來(lái)看,思維可以分為邏輯思維和直覺(jué)思維。長(zhǎng)期以來(lái)人們刻意的把兩者分離開來(lái),其實(shí)這是一種誤解,邏輯思維與
4、直覺(jué)思維從來(lái)就不是割離的。有一種觀點(diǎn)認(rèn)為邏輯重于演繹,而直觀重于分析,從側(cè)重角度來(lái)看,此話不無(wú)道理,但側(cè)重并不等于完全,數(shù)學(xué)邏輯中是否會(huì)有直覺(jué)成分?數(shù)學(xué)直覺(jué)是否具有邏輯性?比如在日常生活中有許多說(shuō)不清道不明的東西,人們對(duì)各種事件作出判斷與猜想離不開直覺(jué),甚至可以說(shuō)直覺(jué)無(wú)時(shí)無(wú)刻不在起作用。數(shù)學(xué)也是對(duì)客觀世界的反映,它是人們對(duì)生活現(xiàn)象與世界運(yùn)行的秩序直覺(jué)的體現(xiàn),再以數(shù)學(xué)的形式將思考的理性過(guò)程格式化。數(shù)學(xué)最初的概念都是基于直覺(jué),數(shù)學(xué)在一定程度上就是在問(wèn)題解決中得到發(fā)展的,問(wèn)題解決也離不開直覺(jué),下面我們就以數(shù)學(xué)問(wèn)題的證明為例,來(lái)考察直覺(jué)在證明過(guò)程中所起的作用。 一個(gè)數(shù)學(xué)
5、證明可以分解為許多基本運(yùn)算或許多”演繹推理元素”,一個(gè)成功的數(shù)學(xué)證明是這些基本運(yùn)算或”演繹推理元素”的一個(gè)成功的組合,仿佛是一條從出發(fā)點(diǎn)到目的地的通道,一個(gè)個(gè)基本運(yùn)算和”演繹推理元素”就是這條通道的一個(gè)個(gè)路段,當(dāng)一個(gè)成功的證明擺在我們面前開始,邏輯可以幫助我們確信沿著這條路必定能順利的到達(dá)目的地,但是邏輯卻不能告訴我們,為什么這些路徑的選取與這樣的組合可以構(gòu)成一條通道。事實(shí)上,出發(fā)不久就會(huì)遇上叉路口,也就是遇上了正確選擇構(gòu)成通道的路段的問(wèn)題。龐加萊認(rèn)為,即使能復(fù)寫出一個(gè)成功的數(shù)學(xué)證明,但不知道是什么東西造成了證明的一致性,……,這些元素安置的順序比元素本身更加重要
6、。笛卡爾認(rèn)為在數(shù)學(xué)推理中的每一步,直覺(jué)力都是不可缺少的。就好似我們平時(shí)打籃球,要靠球感一樣,在快速運(yùn)動(dòng)中來(lái)不及去作邏輯判斷,動(dòng)作只是下意識(shí)的,而下意識(shí)的動(dòng)作正是在平時(shí)訓(xùn)練產(chǎn)生的一種直覺(jué)。 在教育過(guò)程中,老師由于把證明過(guò)程過(guò)分的嚴(yán)格化、程序化。學(xué)生只是見到一具僵硬的邏輯外殼,直覺(jué)的光環(huán)被掩蓋住了,而把成功往往歸功于邏輯的功勞,對(duì)自己的直覺(jué)反而不覺(jué)得。學(xué)生的內(nèi)在潛能沒(méi)有被激發(fā)出來(lái),學(xué)習(xí)的興趣沒(méi)有被調(diào)動(dòng)起來(lái),得不到思維的真正樂(lè)趣?!吨袊?guó)青年報(bào)》曾報(bào)道,”約30%的初中生學(xué)習(xí)了平面幾何推理之后,喪失了對(duì)數(shù)學(xué)學(xué)習(xí)的興趣”,這種現(xiàn)象應(yīng)該引起數(shù)學(xué)教育者的重視與反思?! 《⒅?/p>
7、覺(jué)思維的主要特點(diǎn) 直覺(jué)思維具有自由性、靈活性、自發(fā)性、偶然性、不可靠性等特點(diǎn),從培養(yǎng)直覺(jué)思維的必要性來(lái)看,筆者以為直覺(jué)思維有以下三個(gè)主要特點(diǎn): (1)簡(jiǎn)約性 直覺(jué)思維是對(duì)思維對(duì)象從整體上考察,調(diào)動(dòng)自己的全部知識(shí)經(jīng)驗(yàn),通過(guò)豐富的想象作出的敏銳而迅速的假設(shè),猜想或判斷,它省去了一步一步分析推理的中間環(huán)節(jié),而采取了”跳躍式”的形式。它是一瞬間的思維火花,是長(zhǎng)期積累上的一種升華,是思維者的靈感和頓悟,是思維過(guò)程的高度簡(jiǎn)化,但是它卻清晰的觸及到事物的”本質(zhì)”。 (2)創(chuàng)造性 現(xiàn)代社會(huì)需要?jiǎng)?chuàng)造性的人才,我國(guó)的教材由于長(zhǎng)期以來(lái)借鑒國(guó)外的經(jīng)驗(yàn),過(guò)多的注重培養(yǎng)邏輯思維,培
8、養(yǎng)的人才大