解題基本方法:03.待定系數(shù)法

解題基本方法:03.待定系數(shù)法

ID:15851040

大小:298.50 KB

頁(yè)數(shù):5頁(yè)

時(shí)間:2018-08-06

解題基本方法:03.待定系數(shù)法_第1頁(yè)
解題基本方法:03.待定系數(shù)法_第2頁(yè)
解題基本方法:03.待定系數(shù)法_第3頁(yè)
解題基本方法:03.待定系數(shù)法_第4頁(yè)
解題基本方法:03.待定系數(shù)法_第5頁(yè)
資源描述:

《解題基本方法:03.待定系數(shù)法》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫(kù)。

1、三、待定系數(shù)法要確定變量間的函數(shù)關(guān)系,設(shè)出某些未知系數(shù),然后根據(jù)所給條件來(lái)確定這些未知系數(shù)的方法叫待定系數(shù)法,其理論依據(jù)是多項(xiàng)式恒等,也就是利用了多項(xiàng)式f(x)g(x)的充要條件是:對(duì)于一個(gè)任意的a值,都有f(a)g(a);或者兩個(gè)多項(xiàng)式各同類項(xiàng)的系數(shù)對(duì)應(yīng)相等。待定系數(shù)法解題的關(guān)鍵是依據(jù)已知,正確列出等式或方程。使用待定系數(shù)法,就是把具有某種確定形式的數(shù)學(xué)問(wèn)題,通過(guò)引入一些待定的系數(shù),轉(zhuǎn)化為方程組來(lái)解決,要判斷一個(gè)問(wèn)題是否用待定系數(shù)法求解,主要是看所求解的數(shù)學(xué)問(wèn)題是否具有某種確定的數(shù)學(xué)表達(dá)式,如果具有,就可以用待定系

2、數(shù)法求解。例如分解因式、拆分分式、數(shù)列求和、求函數(shù)式、求復(fù)數(shù)、解析幾何中求曲線方程等,這些問(wèn)題都具有確定的數(shù)學(xué)表達(dá)形式,所以都可以用待定系數(shù)法求解。使用待定系數(shù)法,它解題的基本步驟是:第一步,確定所求問(wèn)題含有待定系數(shù)的解析式;第二步,根據(jù)恒等的條件,列出一組含待定系數(shù)的方程;第三步,解方程組或者消去待定系數(shù),從而使問(wèn)題得到解決。如何列出一組含待定系數(shù)的方程,主要從以下幾方面著手分析:①利用對(duì)應(yīng)系數(shù)相等列方程;②由恒等的概念用數(shù)值代入法列方程;③利用定義本身的屬性列方程;④利用幾何條件列方程。比如在求圓錐曲線的方程時(shí),

3、我們可以用待定系數(shù)法求方程:首先設(shè)所求方程的形式,其中含有待定的系數(shù);再把幾何條件轉(zhuǎn)化為含所求方程未知系數(shù)的方程或方程組;最后解所得的方程或方程組求出未知的系數(shù),并把求出的系數(shù)代入已經(jīng)明確的方程形式,得到所求圓錐曲線的方程。Ⅰ、再現(xiàn)性題組:1.設(shè)f(x)=+m,f(x)的反函數(shù)f(x)=nx-5,那么m、n的值依次為_(kāi)____。A.,-2B.-,2C.,2D.-,-22.二次不等式ax+bx+2>0的解集是(-,),則a+b的值是_____。A.10B.-10C.14D.-143.在(1-x)(1+x)的展開(kāi)式中,x

4、的系數(shù)是_____。A.-297B.-252C.297D.2074.函數(shù)y=a-bcos3x(b<0)的最大值為,最小值為-,則y=-4asin3bx的最小正周期是_____。5.與直線L:2x+3y+5=0平行且過(guò)點(diǎn)A(1,-4)的直線L’的方程是_______________。6.與雙曲線x-=1有共同的漸近線,且過(guò)點(diǎn)(2,2)的雙曲線的方程是____________。【簡(jiǎn)解】1小題:由f(x)=+m求出f(x)=2x-2m,比較系數(shù)易求,選C;2小題:由不等式解集(-,),可知-、是方程ax+bx+2=0的兩根

5、,代入兩根,列出關(guān)于系數(shù)a、b的方程組,易求得a+b,選D;3小題:分析x的系數(shù)由C與(-1)C兩項(xiàng)組成,相加后得x的系數(shù),選D;4小題:由已知最大值和最小值列出a、b的方程組求出a、b的值,再代入求得答案;5小題:設(shè)直線L’方程2x+3y+c=0,點(diǎn)A(1,-4)代入求得C=10,即得2x+3y+10=0;6小題:設(shè)雙曲線方程x-=λ,點(diǎn)(2,2)代入求得λ=3,即得方程-=1。Ⅱ、示范性題組:例1.已知函數(shù)y=的最大值為7,最小值為-1,求此函數(shù)式?!痉治觥壳蠛瘮?shù)的表達(dá)式,實(shí)際上就是確定系數(shù)m、n的值;已知最大值

6、、最小值實(shí)際是就是已知函數(shù)的值域,對(duì)分子或分母為二次函數(shù)的分式函數(shù)的值域易聯(lián)想到“判別式法”?!窘狻亢瘮?shù)式變形為:(y-m)x-4x+(y-n)=0,x∈R,由已知得y-m≠0∴△=(-4)-4(y-m)(y-n)≥0即:y-(m+n)y+(mn-12)≤0①不等式①的解集為(-1,7),則-1、7是方程y-(m+n)y+(mn-12)=0的兩根,代入兩根得:解得:或∴y=或者y=此題也可由解集(-1,7)而設(shè)(y+1)(y-7)≤0,即y-6y-7≤0,然后與不等式①比較系數(shù)而得:,解出m、n而求得函數(shù)式y(tǒng)?!咀ⅰ?/p>

7、在所求函數(shù)式中有兩個(gè)系數(shù)m、n需要確定,首先用“判別式法”處理函數(shù)值域問(wèn)題,得到了含參數(shù)m、n的關(guān)于y的一元二次不等式,且知道了它的解集,求參數(shù)m、n。兩種方法可以求解,一是視為方程兩根,代入后列出m、n的方程求解;二是由已知解集寫出不等式,比較含參數(shù)的不等式而列出m、n的方程組求解。本題要求對(duì)一元二次不等式的解集概念理解透徹,也要求理解求函數(shù)值域的“判別式法”:將y視為參數(shù),函數(shù)式化成含參數(shù)y的關(guān)于x的一元二次方程,可知其有解,利用△≥0,建立了關(guān)于參數(shù)y的不等式,解出y的范圍就是值域,使用“判別式法”的關(guān)鍵是否可

8、以將函數(shù)化成一個(gè)一元二次方程。例2.設(shè)橢圓中心在(2,-1),它的一個(gè)焦點(diǎn)與短軸兩端連線互相垂直,且此焦點(diǎn)與長(zhǎng)軸較近的端點(diǎn)距離是-,求橢圓的方程。yB’xAFO’F’A’B【分析】求橢圓方程,根據(jù)所給條件,確定幾何數(shù)據(jù)a、b、c之值,問(wèn)題就全部解決了。設(shè)a、b、c后,由已知垂直關(guān)系而聯(lián)想到勾股定理建立一個(gè)方程,再將焦點(diǎn)與長(zhǎng)軸較近端點(diǎn)的距離轉(zhuǎn)化為

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。