資源描述:
《初中數(shù)學(xué)規(guī)律題解題基本方法》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。
1、初中數(shù)學(xué)規(guī)律題解題基本方法初中數(shù)學(xué)考試中,經(jīng)常出現(xiàn)數(shù)列的找規(guī)律題,而數(shù)列的有關(guān)知識到高中才學(xué),本文就此類題的解題方法進(jìn)行探索:一、基本方法——看增幅(一)如增幅相等(此數(shù)列實(shí)為等差數(shù)列):對每個數(shù)和它的前一個數(shù)進(jìn)行比較,如增幅相等,則第n個數(shù)可以表示為:a+(n-1)b,其中a為數(shù)列的第一位數(shù),b為增幅,(n-1)b為第一位數(shù)到第n位的總增幅。然后再簡化代數(shù)式a+(n-1)b。例:4、10、16、22、28……,求第n位數(shù)。分析:第二位數(shù)起,每位數(shù)都比前一位數(shù)增加6,增幅相都是6,所以,第n位數(shù)是:4+(n-1)×6=6
2、n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也就是說增幅是等差數(shù)列)。如數(shù)列2、5、10、17、26……,其增幅分別為3、5、7、9,說明增幅以同等幅度增加。此種數(shù)列第n位的數(shù)也有一種通用求法?;舅悸肥牵?、求出數(shù)列的第n-1位到第n位的增幅;2、求出第1位到第第n位的總增幅;3、數(shù)列的第1位數(shù)加上總增幅即是第n位數(shù)。舉例說明:2、5、10、17、26……,求第n位數(shù)。分析:數(shù)列的增幅分別為:3、5、7、9,增幅以同等幅度增加。那么,數(shù)列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-
3、1。數(shù)列第1位到第n位的總增幅為:第一位到第二位的增幅加上第n-1位到第n位的增幅,乘以數(shù)列第1位到第n位增幅的項(xiàng)數(shù),再除以2,即:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位數(shù)是:2+n2-1=n2+1此解法雖然較煩,但是此類題的通用解法,當(dāng)然此題也可用下文介紹的基本技巧解決,方法就簡單的多了(具體見基本技巧(三)中的例題)。(三)增幅不相等,但增幅以倍數(shù)的形式增加,也有通用解法,但此數(shù)列不應(yīng)該叫初中學(xué)生做了。二、基本技巧(一)標(biāo)出序列號:找規(guī)律的題目,通常按照一定的順序給出一系列
4、量,要求我們根據(jù)這些已知的量找出一般規(guī)律。找出的規(guī)律,通常包序列號。所以,把變量和序列號放在一起加以比較,就比較容易發(fā)現(xiàn)其中的奧秘。例如,觀察下列各式數(shù):0,3,8,15,24,……。試按此規(guī)律寫出的第100個數(shù)是。解答這一題,可以先找一般規(guī)律,然后使用這個規(guī)律,計(jì)算出第100個數(shù)。我們把有關(guān)的量放在一起加以比較:給出的數(shù):0,3,8,15,24,……。序列號:1,2,3,4,5,……。容易發(fā)現(xiàn),已知數(shù)的每一項(xiàng),都等于它的序列號的平方減1。因此,第n項(xiàng)是n2-1,第100項(xiàng)是1002-1。(二)公因式法:每位數(shù)分成最小公
5、因式相乘,然后再找規(guī)律,看是不是與n2、n3,或2n、3n,或2n、3n有關(guān)。例1:1,9,25,49,(),(),的第n為(2n-1)2例2:2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18答案與3有關(guān),即:n3+1例3:2、4、8、16.......增幅是2、4、8.......答案與2的乘方有關(guān)即:2n(三)有的可對每位數(shù)同時減去第一位數(shù),成為第二位開始的新數(shù)列,然后用(一)、(二)、(三)技巧找出每位數(shù)與位置的關(guān)系。再加上第一位數(shù),恢復(fù)到原來。例:2、5、10、17、26……,同時
6、減去2后得到新數(shù)列:0、3、8、15、24……,序列號:1、2、3、4、5分析觀察可得,新數(shù)列的第n項(xiàng)為:n2-1,所以題中數(shù)列的第n項(xiàng)為:(n2-1)+2=n2+1(四)有的可對每位數(shù)同時加上,或乘以,或除以第一位數(shù),成為新數(shù)列,然后,在再找出規(guī)律,并恢復(fù)到原來。例:4,16,36,64,?,144,196,…?(第一百個數(shù))同除以4后可得新數(shù)列:1、4、9、16…,很顯然是位置數(shù)的平方。(五)同技巧(三)、(四)一樣,有的可對每位數(shù)同加、或減、或乘、或除同一數(shù)(一般為1、2、3)。(六)觀察一下,能否把一個數(shù)列的奇數(shù)
7、位置與偶數(shù)位置分開成為兩個數(shù)列,再分別找規(guī)律。三、基本步驟1、先看增幅是否相等,如相等,用基本方法(一)解題。2、如不相等,綜合運(yùn)用技巧(一)、(二)找規(guī)律3、如不行,就運(yùn)用技巧(三)、(四)、(五)、(六),變換成新數(shù)列,然后運(yùn)用技巧(一)、(二)找出新數(shù)列的規(guī)律4、最后,如增幅以同等幅度增加,則用用基本方法(二)解題四、練習(xí)題例1:一道初中數(shù)學(xué)找規(guī)律題0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一組有什么規(guī)律?(2)第二、三組分別跟第一組有什么關(guān)
8、系?(3)取每組的第7個數(shù),求這三個數(shù)的和?2、觀察下面兩行數(shù)2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根據(jù)你發(fā)現(xiàn)的規(guī)律,取每行第十個數(shù),求得他們的和。(要求寫出最后的計(jì)算結(jié)果和詳細(xì)解題過程。)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002個中有幾個是黑的