資源描述:
《微積分的起源與發(fā)展》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。
1、微積分的起源與發(fā)展主要內(nèi)容:一、微積分為什么會(huì)產(chǎn)生二、中國(guó)古代數(shù)學(xué)對(duì)微積分創(chuàng)立的貢獻(xiàn)三、對(duì)微積分理論有重要影響的重要科學(xué)家四、微積分的現(xiàn)代發(fā)展一、微積分為什么會(huì)產(chǎn)生微積分是微分學(xué)和積分學(xué)的統(tǒng)稱(chēng),它的萌芽、發(fā)生與發(fā)展經(jīng)歷了漫長(zhǎng)的時(shí)期。公元前三世紀(jì),古希臘的阿基米德在研究解決拋物弓形的面積、球和球冠面積、螺線下面積和旋轉(zhuǎn)雙曲體的體積的問(wèn)題中,就隱含著近代積分學(xué)的思想。作為微分學(xué)基礎(chǔ)的極限理論來(lái)說(shuō),早在古代以有比較清楚的論述。比如我國(guó)的莊周所著的《莊子》一書(shū)的“天下篇”中,記有“一尺之棰,日取其半,萬(wàn)世不竭”。三國(guó)時(shí)期的劉徽在他的割圓術(shù)中提到“割之彌細(xì),所失彌小,割之又割,以至于不可割,則與圓周和
2、體而無(wú)所失矣。”這些都是樸素的、也是很典型的極限概念。到了十七世紀(jì),哥倫布發(fā)現(xiàn)新大陸,哥白尼創(chuàng)立日心說(shuō),伽利略出版《力學(xué)對(duì)話》,開(kāi)普勒發(fā)現(xiàn)行星運(yùn)動(dòng)規(guī)律--航海的需要,礦山的開(kāi)發(fā),火松制造提出了一系列的力學(xué)和數(shù)學(xué)的問(wèn)題,這些問(wèn)題也就成了促使微積分產(chǎn)生的因素,微積分在這樣的條件下誕生是必然的。歸結(jié)起來(lái),大約有四種主要類(lèi)型的問(wèn)題:第一類(lèi)是研究運(yùn)動(dòng)的時(shí)候直接出現(xiàn)的,也就是求即時(shí)速度的問(wèn)題。已知物體移動(dòng)的距離表為時(shí)間的函數(shù)的公式,求物體在任意時(shí)刻的速度和加速度;反過(guò)來(lái),已知物體的加速度表為時(shí)間的函數(shù)的公式,求速度和距離。困難在于:十七世紀(jì)所涉及的速度和加速度每時(shí)每刻都在變化。例如,計(jì)算瞬時(shí)速度,就不能
3、象計(jì)算平均速度那樣,用運(yùn)動(dòng)的時(shí)間去除移動(dòng)的距離,因?yàn)樵诮o定的瞬刻,移動(dòng)的距離和所用的時(shí)間都是0,而0/0是無(wú)意義的。但根據(jù)物理學(xué),每個(gè)運(yùn)動(dòng)的物體在它運(yùn)動(dòng)的每一時(shí)刻必有速度,是不容懷疑的。第二類(lèi)問(wèn)題是求曲線的切線的問(wèn)題。這個(gè)問(wèn)題的重要性來(lái)源于好幾個(gè)方面:純幾何問(wèn)題、光學(xué)中研究光線通過(guò)透鏡的通道問(wèn)題、運(yùn)動(dòng)物體在它的軌跡上任意一點(diǎn)處的運(yùn)動(dòng)方向問(wèn)題等。困難在于:曲線的“切線”的定義本身就是一個(gè)沒(méi)有解決的問(wèn)題。古希臘人把圓錐曲線的切線定義為“與曲線只接觸于一點(diǎn)而且位于曲線的一邊的直線”。這個(gè)定義對(duì)于十七世紀(jì)所用的較復(fù)雜的曲線已經(jīng)不適應(yīng)了。第三類(lèi)問(wèn)題是求函數(shù)的最大值和最小值問(wèn)題。十七世紀(jì)初期,伽利略斷定
4、,在真空中以45°角發(fā)射炮彈時(shí),射程最大。研究行星運(yùn)動(dòng)也涉及最大最小值問(wèn)題。困難在于:原有的初等計(jì)算方法已不適于解決研究中出現(xiàn)的問(wèn)題。但新的方法尚無(wú)眉目。第四類(lèi)問(wèn)題是求曲線長(zhǎng)、曲線圍成的面積、曲面圍成的體積、物體的重心、一個(gè)體積相當(dāng)大的物體作用于另一物體上的引力。困難在于:古希臘人用窮竭法求出了一些面積和體積,盡管他們只是對(duì)于比較簡(jiǎn)單的面積和體積應(yīng)用了這個(gè)方法,但也必須添加許多技巧,因?yàn)檫@個(gè)方法缺乏一般性,而且經(jīng)常得不到數(shù)值的解答。窮竭法先是被逐步修改,后來(lái)由微積分的創(chuàng)立而被根本修改了。歐多克斯的窮竭法是一種有限且相當(dāng)復(fù)雜的幾何方法。它的思想雖然古老,但很重要,阿基米德用得相當(dāng)熟練,我們就用
5、他的一個(gè)例子來(lái)說(shuō)明一下這種方法。二、中國(guó)古代數(shù)學(xué)對(duì)微積分創(chuàng)立的貢獻(xiàn)微積分的產(chǎn)生一般分為三個(gè)階段:極限概念;求積的無(wú)限小方法;積分與微分的互逆關(guān)系。最后一步是由牛頓、萊布尼茲完成的。前兩階段的工作,歐洲的大批數(shù)學(xué)家一直追朔到古希臘的阿基米德都作出了各自的貢獻(xiàn)。對(duì)于這方面的工作,古代中國(guó)毫不遜色于西方,微積分思想在古代中國(guó)早有萌芽,甚至是古希臘數(shù)學(xué)不能比擬的。公元前7世紀(jì)老莊哲學(xué)中就有無(wú)限可分性和極限思想;公元前4世紀(jì)《墨經(jīng)》中有了有窮、無(wú)窮、無(wú)限?。ㄗ钚o(wú)內(nèi))、無(wú)窮大(最大無(wú)外)的定義和極限、瞬時(shí)等概念。劉徽公元263年首創(chuàng)的割圓術(shù)求圓面積和方錐體積,求得圓周率約等于3.1416,他的極限思想
6、和無(wú)窮小方法,是世界古代極限思想的深刻體現(xiàn)。微積分思想雖然可追朔古希臘,但它的概念和法則卻是16世紀(jì)下半葉,開(kāi)普勒、卡瓦列利等求積的不可分量思想和方法基礎(chǔ)上產(chǎn)生和發(fā)展起來(lái)的。而這些思想和方法從劉徽對(duì)圓錐、圓臺(tái)、圓柱的體積公式的證明到公元5世紀(jì)祖恒求球體積的方法中都可找到。北宋大科學(xué)家沈括的《夢(mèng)溪筆談》獨(dú)創(chuàng)了“隙積術(shù)”、“會(huì)圓術(shù)”和“棋局都數(shù)術(shù)”開(kāi)創(chuàng)了對(duì)高階等差級(jí)數(shù)求和的研究。南宋大數(shù)學(xué)家秦九韶于1274年撰寫(xiě)了劃時(shí)代巨著《數(shù)書(shū)九章》十八卷,創(chuàng)舉世聞名的“大衍求一術(shù)”——增乘開(kāi)方法解任意次數(shù)字(高次)方程近似解,比西方早500多年。特別是13世紀(jì)40年代到14世紀(jì)初,在主要領(lǐng)域都達(dá)到了中國(guó)古代
7、數(shù)學(xué)的高峰,出現(xiàn)了現(xiàn)通稱(chēng)賈憲三角形的“開(kāi)方作法本源圖”和增乘開(kāi)方法、“正負(fù)開(kāi)方術(shù)”、“大衍求一術(shù)”、“大衍總數(shù)術(shù)”(一次同余式組解法)、“垛積術(shù)”(高階等差級(jí)數(shù)求和)、“招差術(shù)”(高次差內(nèi)差法)、“天元術(shù)”(數(shù)字高次方程一般解法)、“四元術(shù)”(四元高次方程組解法)、勾股數(shù)學(xué)、弧矢割圓術(shù)、組合數(shù)學(xué)、計(jì)算技術(shù)改革和珠算等都是在世界數(shù)學(xué)史上有重要地位的杰出成果,中國(guó)古代數(shù)學(xué)有了微積分前兩階段的出色工作,其中許多都是