初三數(shù)學(xué)暑假銜接班講義(好)

初三數(shù)學(xué)暑假銜接班講義(好)

ID:25021442

大?。?.63 MB

頁(yè)數(shù):60頁(yè)

時(shí)間:2018-11-17

初三數(shù)學(xué)暑假銜接班講義(好)_第1頁(yè)
初三數(shù)學(xué)暑假銜接班講義(好)_第2頁(yè)
初三數(shù)學(xué)暑假銜接班講義(好)_第3頁(yè)
初三數(shù)學(xué)暑假銜接班講義(好)_第4頁(yè)
初三數(shù)學(xué)暑假銜接班講義(好)_第5頁(yè)
資源描述:

《初三數(shù)學(xué)暑假銜接班講義(好)》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。

1、...目錄本次培訓(xùn)具體計(jì)劃如下,以供參考:第一講如何做幾何證明題第二講平行四邊形(一)第三講平行四邊形(二)第四講梯形第五講中位線及其應(yīng)用第六講一元二次方程的解法第七講一元二次方程的判別式第八講一元二次方程的根與系數(shù)的關(guān)系第九講一元二次方程的應(yīng)用第十講專題復(fù)習(xí)一:因式分解、二次根式、分式第十一講專題復(fù)習(xí)二:代數(shù)式的恒等變形第十二講專題復(fù)習(xí)三:相似三角形第十三講結(jié)業(yè)考試(未裝訂在內(nèi),另發(fā))第十四講試卷講評(píng)......第一講:如何做幾何證明題【知識(shí)梳理】1、幾何證明是平面幾何中的一個(gè)重要問(wèn)題,它對(duì)培養(yǎng)學(xué)生邏輯思維能力有著很大作用。幾何證明有兩種基本類型:一是平面圖形的數(shù)量關(guān)

2、系;二是有關(guān)平面圖形的位置關(guān)系。這兩類問(wèn)題常常可以相互轉(zhuǎn)化,如證明平行關(guān)系可轉(zhuǎn)化為證明角等或角互補(bǔ)的問(wèn)題。2、掌握分析、證明幾何問(wèn)題的常用方法:(1)綜合法(由因?qū)Ч?,從已知條件出發(fā),通過(guò)有關(guān)定義、定理、公理的應(yīng)用,逐步向前推進(jìn),直到問(wèn)題的解決;(2)分析法(執(zhí)果索因)從命題的結(jié)論考慮,推敲使其成立需要具備的條件,然后再把所需的條件看成要證的結(jié)論繼續(xù)推敲,如此逐步往上逆求,直到已知事實(shí)為止;(3)兩頭湊法:將分析與綜合法合并使用,比較起來(lái),分析法利于思考,綜合法易于表達(dá),因此,在實(shí)際思考問(wèn)題時(shí),可合并使用,靈活處理,以利于縮短題設(shè)與結(jié)論的距離,最后達(dá)到證明目的。3、掌

3、握構(gòu)造基本圖形的方法:復(fù)雜的圖形都是由基本圖形組成的,因此要善于將復(fù)雜圖形分解成基本圖形。在更多時(shí)候需要構(gòu)造基本圖形,在構(gòu)造基本圖形時(shí)往往需要添加輔助線,以達(dá)到集中條件、轉(zhuǎn)化問(wèn)題的目的。【例題精講】【專題一】證明線段相等或角相等兩條線段或兩個(gè)角相等是平面幾何證明中最基本也是最重要的一種相等關(guān)系。很多其它問(wèn)題最后都可化歸為此類問(wèn)題來(lái)證。證明兩條線段或兩角相等最常用的方法是利用全等三角形的性質(zhì),其它如線段中垂線的性質(zhì)、角平分線的性質(zhì)、等腰三角形的判定與性質(zhì)等也經(jīng)常用到。【例1】已知:如圖所示,中,。求證:DE=DF【鞏固】如圖所示,已知為等邊三角形,延長(zhǎng)BC到D,延長(zhǎng)BA到

4、E,并且使AE=BD,連結(jié)CE、DE。求證:EC=ED【例2】已知:如圖所示,AB=CD,AD=BC,AE=CF。......求證:∠E=∠F【專題二】證明直線平行或垂直在兩條直線的位置關(guān)系中,平行與垂直是兩種特殊的位置。證兩直線平行,可用同位角、內(nèi)錯(cuò)角或同旁內(nèi)角的關(guān)系來(lái)證,也可通過(guò)邊對(duì)應(yīng)成比例、三角形中位線定理證明。證兩條直線垂直,可轉(zhuǎn)化為證一個(gè)角等于90°,或利用兩個(gè)銳角互余,或等腰三角形“三線合一”來(lái)證。【例3】如圖所示,設(shè)BP、CQ是的內(nèi)角平分線,AH、AK分別為A到BP、CQ的垂線。求證:KH∥BC【例4】已知:如圖所示,AB=AC,。求證:FD⊥ED【專題三

5、】證明線段和的問(wèn)題......(一)在較長(zhǎng)線段上截取一線段等一較短線段,證明其余部分等于另一較短線段。(截長(zhǎng)法)【例5】如圖,四邊形ABCD中,AD∥BC,點(diǎn)E是AB上一個(gè)動(dòng)點(diǎn),若∠B=60°,AB=BC,且∠DEC=60°;求證:BC=AD+AE【鞏固】已知:如圖,在中,,∠BAC、∠BCA的角平分線AD、CE相交于O。求證:AC=AE+CD(二)延長(zhǎng)一較短線段,使延長(zhǎng)部分等于另一較短線段,則兩較短線段成為一條線段,證明該線段等于較長(zhǎng)線段。(補(bǔ)短法)【例6】已知:如圖7所示,正方形ABCD中,F(xiàn)在DC上,E在BC上,。求證:EF=BE+DF【專題四】證明幾何不等式:.

6、.....【例7】已知:如圖所示,在中,AD平分∠BAC,。求證:【拓展】中,于D,求證:第二講:平行四邊形(一)【知識(shí)梳理】1、平行四邊形:平行四邊形的定義決定了它有以下幾個(gè)基本性質(zhì):(1)平行四邊形對(duì)角相等;(2)平行四邊形對(duì)邊相等;(3)平行四邊形對(duì)角線互相平分。除了定義以外,平行四邊形還有以下幾種判定方法:(1)兩組對(duì)角分別相等的四邊形是平行四邊形;(2)兩組對(duì)邊分別相等的四邊形是平行四邊形;(3)對(duì)角線互相平分的四邊形是平行四邊形;(4)一組對(duì)邊平行且相等的四邊形是平行四邊形。2、特殊平行四邊形:一、矩形(1)有一角是直角的平行四邊形是矩形(2)矩形的四個(gè)角都

7、是直角;......(3)矩形的對(duì)角線相等。(4)矩形判定定理1:有三個(gè)角是直角的四邊形是矩形(5)矩形判定定理2:對(duì)角線相等的平行四邊形是矩形二、菱形(1)把一組鄰邊相等的平行四邊形叫做菱形.(2)定理1:菱形的四條邊都相等(3)菱形的對(duì)角線互相垂直,并且每條對(duì)角線平分一組對(duì)角.(4)菱形的面積等于菱形的對(duì)角線相乘除以2(5)菱形判定定理1:四邊都相等的四邊形是菱形(6)菱形判定定理2:對(duì)角線互相垂直的平行四邊形是菱形。三、正方形(1)有一組鄰邊相等,并且有一個(gè)角是直角的平行四邊形叫做正方形(2)性質(zhì):①四個(gè)角都是直角,四條邊相等②對(duì)角

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。