資源描述:
《割之彌細(xì)所失彌少割之又割以至于不可割則與圓周》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1、割圓術(shù):播放——?jiǎng)⒒找?、概念的引入正六邊形的面積正十二邊形的面積正形的面積2、截丈問題:“一尺之棰,日截其半,萬世不竭”二、數(shù)列的定義例如注意:1.數(shù)列對(duì)應(yīng)著數(shù)軸上一個(gè)點(diǎn)列.可看作一動(dòng)點(diǎn)在數(shù)軸上依次取2.數(shù)列是整標(biāo)函數(shù)播放三、數(shù)列的極限問題:當(dāng)無限增大時(shí),是否無限接近于某一確定的數(shù)值?如果是,如何確定?問題:“無限接近”意味著什么?如何用數(shù)學(xué)語言刻劃它.通過上面演示實(shí)驗(yàn)的觀察:如果數(shù)列沒有極限,就說數(shù)列是發(fā)散的.注意:幾何解釋:
2、其中數(shù)列極限的定義未給出求極限的方法.例1證所以,注意:例2證所以,說明:常數(shù)列的極限等于同一常數(shù).小結(jié):用定義證數(shù)列極限存在時(shí),關(guān)鍵是任意給定尋找N,但不必要求最小的N.例3證例4證四、數(shù)列極限的性質(zhì)1、有界性例如,有界無界定理1收斂的數(shù)列必定有界.證由定義,注意:有界性是數(shù)列收斂的必要條件.推論無界數(shù)列必定發(fā)散.2、唯一性定理2每個(gè)收斂的數(shù)列只有一個(gè)極限.證由定義,故收斂數(shù)列極限唯一.例5證由定義,區(qū)間長(zhǎng)度為1.不可能同時(shí)位于長(zhǎng)度為1的區(qū)間內(nèi).3、子數(shù)列的收斂性注意:例如,定理3收斂數(shù)列的任一子數(shù)
3、列也收斂.且極限相同.證證畢.五、小結(jié)數(shù)列:研究其變化規(guī)律;數(shù)列極限:極限思想、精確定義、幾何意義;收斂數(shù)列的性質(zhì):有界性、唯一性、子數(shù)列的收斂性.思考題證明要使只要使從而由得取當(dāng)時(shí),必有成立思考題解答~(等價(jià))證明中所采用的實(shí)際上就是不等式即證明中沒有采用“適當(dāng)放大”的值從而時(shí),僅有成立,但不是的充分條件.反而縮小為練習(xí)題1、割圓術(shù):“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”——?jiǎng)⒒找?、概念的引?、割圓術(shù):“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所
4、失矣”——?jiǎng)⒒找?、概念的引入“割之彌?xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1、割圓術(shù):——?jiǎng)⒒找?、概念的引入“割之彌?xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1、割圓術(shù):——?jiǎng)⒒找?、概念的引入“割之彌?xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1、割圓術(shù):——?jiǎng)⒒找弧⒏拍畹囊搿案钪畯浖?xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1、割圓術(shù):——?jiǎng)⒒找?、概念的引入“割之彌?xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無
5、所失矣”1、割圓術(shù):——?jiǎng)⒒找?、概念的引入“割之彌?xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1、割圓術(shù):——?jiǎng)⒒找?、概念的引入“割之彌?xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1、割圓術(shù):——?jiǎng)⒒找?、概念的引入三、?shù)列的極限三、數(shù)列的極限三、數(shù)列的極限三、數(shù)列的極限三、數(shù)列的極限三、數(shù)列的極限三、數(shù)列的極限三、數(shù)列的極限三、數(shù)列的極限三、數(shù)列的極限三、數(shù)列的極限三、數(shù)列的極限三、數(shù)列的極限