資源描述:
《巧解排列組合地21種模型》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫(kù)。
1、實(shí)用標(biāo)準(zhǔn)文檔巧解排列組合的21種模型排列組合問(wèn)題是高考的必考題,它聯(lián)系實(shí)際生動(dòng)有趣,但題型多樣,思路靈活,不易掌握.實(shí)踐證明,掌握題型和識(shí)別模式,并熟練運(yùn)用,是解決排列組合的有效途徑.下面就系統(tǒng)地介紹巧解排列組合的21種模型.1.相鄰問(wèn)題捆綁法:題目中規(guī)定相鄰的幾個(gè)元素捆綁成一個(gè)組,當(dāng)作一個(gè)大元素參與排列.例1.五人并排站成一排,如果必須相鄰且在的右邊,那么不同的排法種數(shù)有A、60種B、48種C、36種D、24種解析:把視為一人,且固定在的右邊,則本題相當(dāng)于4人的全排列,種,答案:.2.相離問(wèn)題插空排:元素相離(即不
2、相鄰)問(wèn)題,可先把無(wú)位置要求的幾個(gè)元素全排列,再把規(guī)定的相離的幾個(gè)元素插入上述幾個(gè)元素的空位和兩端.例2.七人并排站成一行,如果甲乙兩個(gè)必須不相鄰,那么不同的排法種數(shù)是A、1440種B、3600種C、4820種D、4800種解析:除甲乙外,其余5個(gè)排列數(shù)為種,再用甲乙去插6個(gè)空位有種,不同的排法種數(shù)是種,選.3.定序問(wèn)題縮倍法:在排列問(wèn)題中限制某幾個(gè)元素必須保持一定的順序,可用縮小倍數(shù)的方法.例3.五人并排站成一排,如果必須站在的右邊(可以不相鄰)那么不同的排法種數(shù)是A、24種B、60種C、90種D、120種解析:在
3、的右邊與在的左邊排法數(shù)相同,所以題設(shè)的排法只是5個(gè)元素全排列數(shù)的一半,即種,選.4.標(biāo)號(hào)排位問(wèn)題分步法:把元素排到指定位置上,可先把某個(gè)元素按規(guī)定排入,第二步再排另一個(gè)元素,如此繼續(xù)下去,依次即可完成.例4.將數(shù)字1,2,3,4填入標(biāo)號(hào)為1,2,3,4的四個(gè)方格里,每格填一個(gè)數(shù),則每個(gè)方格的標(biāo)號(hào)與所填數(shù)字均不相同的填法有精彩文案實(shí)用標(biāo)準(zhǔn)文檔A、6種B、9種C、11種D、23種解析:先把1填入方格中,符合條件的有3種方法,第二步把被填入方格的對(duì)應(yīng)數(shù)字填入其它三個(gè)方格,又有三種方法;第三步填余下的兩個(gè)數(shù)字,只有一種填法,
4、共有3×3×1=9種填法,選.5.有序分配問(wèn)題逐分法:有序分配問(wèn)題指把元素分成若干組,可用逐步下量分組法.例5.(1)有甲乙丙三項(xiàng)任務(wù),甲需2人承擔(dān),乙丙各需一人承擔(dān),從10人中選出4人承擔(dān)這三項(xiàng)任務(wù),不同的選法種數(shù)是A、1260種B、2025種C、2520種D、5040種解析:先從10人中選出2人承擔(dān)甲項(xiàng)任務(wù),再?gòu)氖O碌?人中選1人承擔(dān)乙項(xiàng)任務(wù),第三步從另外的7人中選1人承擔(dān)丙項(xiàng)任務(wù),不同的選法共有種,選.(2)12名同學(xué)分別到三個(gè)不同的路口進(jìn)行流量的調(diào)查,若每個(gè)路口4人,則不同的分配方案有A、種B、種C、種D、種
5、答案:.6.全員分配問(wèn)題分組法:例6.(1)4名優(yōu)秀學(xué)生全部保送到3所學(xué)校去,每所學(xué)校至少去一名,則不同的保送方案有多少種?解析:把四名學(xué)生分成3組有種方法,再把三組學(xué)生分配到三所學(xué)校有種,故共有種方法.說(shuō)明:分配的元素多于對(duì)象且每一對(duì)象都有元素分配時(shí)常用先分組再分配.(2)5本不同的書(shū),全部分給4個(gè)學(xué)生,每個(gè)學(xué)生至少一本,不同的分法種數(shù)為A、480種B、240種C、120種D、96種答案:.7.名額分配問(wèn)題隔板法:例7.10個(gè)三好學(xué)生名額分到7個(gè)班級(jí),每個(gè)班級(jí)至少一個(gè)名額,有多少種不同分配方案?解析:10個(gè)名額分到
6、7個(gè)班級(jí),就是把10個(gè)名額看成10個(gè)相同的小球分成7精彩文案實(shí)用標(biāo)準(zhǔn)文檔堆,每堆至少一個(gè),可以在10個(gè)小球的9個(gè)空位中插入6塊木板,每一種插法對(duì)應(yīng)著一種分配方案,故共有不同的分配方案為種.8.限制條件的分配問(wèn)題分類法:例8.某高校從某系的10名優(yōu)秀畢業(yè)生中選4人分別到西部四城市參加中國(guó)西部經(jīng)濟(jì)開(kāi)發(fā)建設(shè),其中甲同學(xué)不到銀川,乙不到西寧,共有多少種不同派遣方案?解析:因?yàn)榧滓矣邢拗茥l件,所以按照是否含有甲乙來(lái)分類,有以下四種情況:①若甲乙都不參加,則有派遣方案種;②若甲參加而乙不參加,先安排甲有3種方法,然后安排其余學(xué)生
7、有方法,所以共有;③若乙參加而甲不參加同理也有種;④若甲乙都參加,則先安排甲乙,有7種方法,然后再安排其余8人到另外兩個(gè)城市有種,共有方法.所以共有不同的派遣方法總數(shù)為種.9.多元問(wèn)題分類法:元素多,取出的情況也多種,可按結(jié)果要求分成不相容的幾類情況分別計(jì)數(shù),最后總計(jì).例9.(1)由數(shù)字0,1,2,3,4,5組成沒(méi)有重復(fù)數(shù)字的六位數(shù),其中個(gè)位數(shù)字小于十位數(shù)字的共有A、210種B、300種C、464種D、600種解析:按題意,個(gè)位數(shù)字只可能是0、1、2、3和4共5種情況,分別有、、、和個(gè),合并總計(jì)300個(gè),選.(2)從
8、1,2,3…,100這100個(gè)數(shù)中,任取兩個(gè)數(shù),使它們的乘積能被7整除,這兩個(gè)數(shù)的取法(不計(jì)順序)共有多少種?解析:被取的兩個(gè)數(shù)中至少有一個(gè)能被7整除時(shí),他們的乘積就能被7整除,將這100個(gè)數(shù)組成的集合視為全集I,能被7整除的數(shù)的集合記做共有14個(gè)元素,不能被7整除的數(shù)組成的集合記做共有86個(gè)元素;由此可知,從中任取2個(gè)元素的取法有,從中任取一